# 基測重點掃描/理化/

| CONTENTS |  |
|----------|--|
| mmmer    |  |

| 主 | 題 一   | 基本測量        | 2  |
|---|-------|-------------|----|
| 主 | 題二    | 認識物質        | 3  |
| 主 | 題三    | 水溶液         | 4  |
| 主 | 題 四   | 空 氣         | 5  |
| 主 | 題 五   | 波動與聲音       | 6  |
| 主 | 題 六   | 光           | 7  |
| 主 | 題七    | 溫度與熱        | 10 |
| 主 | 題 八   | 元素與原子       | 11 |
| 主 | 題 九   | 化學式及化學反應式   | 13 |
| 主 | 題 十   | 原子量、莫耳與化學計量 | 15 |
| 主 | 題 十一  | 電解質與常見酸、鹼、鹽 | 16 |
| 主 | 題 十二  | 酸鹼的濃度與酸鹼中和  | 17 |
| 主 | 題 十三  | 反應速率與化學平衡   | 19 |
| 主 | 題 十四  | 氧化還原        | 20 |
| 主 | 題 十五  | 有機化合物       | 21 |
| 主 | 題 十六  | 聚合物與清潔劑     | 22 |
| 主 | 題 十七  | 力與壓力        | 23 |
| 主 | 題 十八  | 直線運動        | 25 |
| 主 | 題 十九  | 牛頓三大運動定律    | 26 |
| 主 | 題 二十  | 功與機械        | 27 |
| 主 | 題 二十一 | 電與生活        | 29 |
| 主 | 題 二十二 | 電池、電解與電鍍    | 31 |
| 主 | 題 二十三 | 電與磁         | 32 |

Nan to

# 理化基測重點掃描》

# 主題一 基本測量

#### 1、長度測量

(1)完整測量結果的表達應包含數字和單位兩部分。

數字部份(測量值)=準確值+1位估計值。

→ 測量儀器最小刻度的下一位

例如:以最小刻度 0.1 公分的直尺,測量鉛筆長度。



(2) 若測量恰好落在最小刻度上,則估計值應記為0。

#### 2、體積測量

(1)液體:使用量筒進行測量時,視線須與液面中央處平行,讀取刻度並記錄到最小 刻度下一位。

(2)固體:形狀不規則且不溶於水的固體可用**排水法**求得(測量物體沒入水中水位的變化量)。若待測物為浮體,先將會下沉的重物(小石子)以細線綁住,投入有水的量筒中,記錄水位,再將重物綁住待測物,使其完全沒入水中,觀察水位變化並量測得物體體積。

#### 3、質量測量:使用天平測量

| 上皿(等臂)天平                                                                                                                | 懸吊式等臂天平                                          | 三粱天平                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| 指針校準螺絲                                                                                                                  | 騎碼<br>校準螺絲<br>指針<br>休止<br>裝置                     | 秤盤                                                                                                     |
| (1)歸零:空盤時,調整校<br>準螺絲直到指針靜止在<br>中央零刻度。<br>(2)待測物置左盤,取砝碼<br>置於右盤,直到指針左<br>右搖擺角度相等或靜止<br>在中央零刻度。<br>(3)待測物質量=右盤砝碼<br>克數加總。 | 零。若指針向右,則左盤<br>重,校準螺絲向右旋出,<br>使指針直到靜止在中央零<br>刻度。 | (1)歸零:空盤時,騎碼移至<br>零。調整校準螺絲直到指<br>針靜止在中央零刻度。<br>(2)待測物置秤盤,移動騎碼<br>直到橫梁處於平衡狀態。<br>(3)待測物質量=所有騎碼讀<br>數加總。 |

4、為了使測量的結果更準確,可多做幾次測量,再求平均值。



#### 主題二 認識物質

#### 1、物質的性質

|      | 定義             | 舉例                |
|------|----------------|-------------------|
| 物理性質 | 不改變物質組成,而以觀察、測 | 顏色、形狀、熔點、沸點、導電性、導 |
| 物理性貝 | 量等方法描述出物質的性質   | 熱性                |
| 化學性質 | 描述一種物質本身或與其他物質 | 可燃性、助燃性、活性、腐蝕性、酸鹼 |
| 化学性貝 | 作用後,變成另一種物質的性質 | 性                 |

#### 2、物質的種類

- (1)純物質:只含一種物質,具有一定的組成及特性,定壓下有固定熔點、沸點。
  - a、元素:不能以普通化學方法再分解為更簡單的物質。例如:鈉、氫。
  - b、**化合物**:由兩種或兩種以上元素,以固定比例化合而成。例如:水、氯化鈉。
- (2)**混合物**:由兩種或多種純物質任意比例混合,各成分仍具有原來物質的特性,但整體性質可能隨混合比例不同而改變。例如:溶液、合金。

#### 3、混合物的分離

| 原理     | 分離法        |
|--------|------------|
| 溶解度不同  | 溶解         |
| 顆粒大小不同 | 過濾         |
| 沸點不同   | 蒸發結晶、蒸餾、分餾 |

#### 4、物質的變化

|      | 說明                                         | 舉例                                          |
|------|--------------------------------------------|---------------------------------------------|
| 物理變化 | 反應後物質的物理性質雖<br>改變(外觀、形態、體積)<br>,但組成及本質未改變  | 三態變化、葡萄糖溶解、揮發、形狀改變                          |
|      | N C NO | 燃燒、光合作用、消化、鐵生鏽、食物煮熟、<br>酸鹼中和、CO2通入澄清石灰水產生沉澱 |

#### 5、吸熱反應與放熱反應

|      | 定義             | 舉例                                             |
|------|----------------|------------------------------------------------|
| 放熱反應 | 反應過程中會<br>放出能量 | 鎂帶燃燒、氫氧化鈉溶解、蠟燭燃燒、呼吸作用、酸<br>鹼中和、暖暖包與空氣作用、凝結、凝固  |
| 吸熱反應 | 反應過程中會<br>吸收能量 | 食鹽溶解、小蘇打加熱分解、光合作用、蒸發、融雪<br>、藍色硫酸銅晶體加熱變成白色硫酸銅粉末 |

- 6、密度:單位體積中,所含物質的質量。
  - (1)密度= $\frac{質量}{體積}$ ;  $D=\frac{M}{V}$
  - (2)單位: g/cm³(最常用)、kg/m³
  - (3)水的密度 1 g/cm<sup>3</sup>、冰密度 0.9 g/cm<sup>3</sup>、水銀密度 13.6 g/cm<sup>3</sup>



#### 主題三 水溶液

- 1、水溶液:物質與水均匀混合,形成水溶液。溶於水的物質為溶質,水為溶劑。
- 2、非水溶劑:水以外的溶劑,例如酒精(碘酒是碘的酒精溶液)、丙酮。
- 3、溶液=溶質+溶劑,例如:食鹽水(溶液)=食鹽(溶質)+水(溶劑)。溶質不一定是固體,例如啤酒中的酒精是溶質、汽水中的 $CO_2$ 是溶質。
- **4、濃度**:定量溶液中,溶質的含量。常用表示法如下:
  - (1)重量百分濃度:每100克的溶液中,所含溶質的克數,以%表示。

公式:重量百分濃度=<u>溶質重</u> 溶質重+溶劑重×100%=<u>溶質重</u>×100%

(2)體積百分濃度:每 100 毫升的溶液中,所含溶質的毫升數,以%vol 表示。

公式:體積百分濃度= 溶質體積 溶質體積 + 溶劑體積 = 溶質體積 溶液體積 × 100%

- (3)**百萬分濃度(ppm)**:每百萬份溶液中所含溶質份數。表示水溶液濃度時,ppm 通常 是指每公升溶液所含溶質毫克數,例如:5ppm 表示 1 公升溶液中含 5 毫克溶質。
- **5、同一種溶液的稀釋、混合**,其重量百分濃度、體積百分濃度,都可利用溶質量不變的 特性來計算。
  - 稀釋前濃度×稀釋前重量(體積)=稀釋後濃度×稀釋後重量(體積)
  - ・混合前個別濃度×個別重量(體積)=混合後濃度×混合後重量(體積)
- 6、溶解度:定溫下,定量溶劑所能溶解溶質的最大質量。

例如:20℃下,每 100g 水最多可溶解 32g 硝酸鉀,表示法:32g/100g 水。

- 7、(1)固體溶解時,溫度愈高,溶解度愈大。例外: Ca(OH)₂溫度愈高溶得愈少。
  - (2)氣體溶解時,溫度愈高,溶解度愈小;壓力愈大,溶解度愈大。例如:罐裝汽水。

#### 8、飽和與未飽和溶液

| 溶液    | 定義                                   |
|-------|--------------------------------------|
| 飽和溶液  | 定溫下,溶劑中所能溶解的溶質,已達最大量,無法再溶解更多的<br>溶質。 |
| 未飽和溶液 | 定溫下,溶劑中所能溶解的溶質,尚未達最大量,還可繼續溶解溶<br>質。  |

# 主題四空氣

# **1、空氣**為混合物,主要組成成分如下:

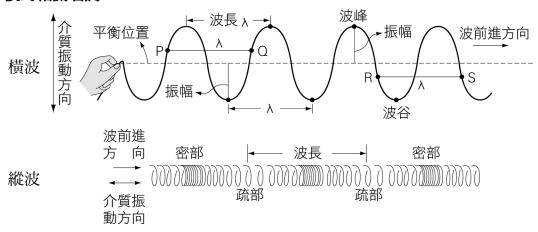
| 組成                                  | 特性                                                                    | 用途                                                                                                        |
|-------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| <b>友氣</b> • 安定、不可燃不助燃 • 無色、無臭,室溫下幾乎 |                                                                       | <ul> <li>液態氮可用於冷凍乾燥食物或做冷凍劑</li> <li>充氮包裝可用於食物保鮮</li> <li>製造氮肥</li> <li>提供生物體呼吸</li> <li>各種氧化反應</li> </ul> |
| 惰性氣體<br>( <b>氫、氦、氖</b> )            | <ul><li></li></ul>                                                    | <ul> <li> 氫氣可在焊接金屬時,防止金屬氧化</li> <li> 氦氣密度小,可用於取代氫氣充填氣球、飛船</li> <li> 氖氣可充入霓虹燈,充電時發紅光,做為廣告看板之用</li> </ul>   |
| 二氧化碳、水蒸氣、臭氧                         | <ul><li>含量隨地點、時間不同而不同,稱為變動氣體</li><li>二氧化碳溶於水成弱酸性,使藍色石蕊試紙變紅色</li></ul> | <ul><li>● 二氧化恢 明 用 於</li></ul>                                                                            |

# 2、O<sub>2</sub>與 CO<sub>2</sub>的製備

|       | 反應式                                                                                                       | 收集法 | 注意事項    | 檢驗                |
|-------|-----------------------------------------------------------------------------------------------------------|-----|---------|-------------------|
| $O_2$ | 2H <sub>2</sub> O <sub>2</sub> <del>MnO<sub>2</sub> →</del> 2H <sub>2</sub> O + O <sub>2</sub> (二氧化錳是催化劑) | 排水集 | 面下      | 點燃的線香,燃<br>燒旺盛    |
|       | $CaCO_3 + 2HC1 \rightarrow CaCl_2 + H_2O$<br>+ $CO_2$                                                     | 氣法  | 村等目物無小川 | 通入澄清石灰水<br>產生白色沉澱 |

#### 主題五 波動與聲音

1、波是一種能量的傳遞,波只能傳遞能量,不能傳遞介質。


#### 2、力學波與非力學波

| 分類   | 有無介質 | 舉例           |
|------|------|--------------|
| 力學波  | 需介質  | 繩波、彈簧波、水波、聲波 |
| 非力學波 | 不需介質 | 光波、電磁波       |

**3、**(1)**橫波**:高低波、上下震動。【介質與波動互相垂直】

(2)縱波:疏密波、前後震動。【介質與波動互相平行】

#### 4、波的相關名詞

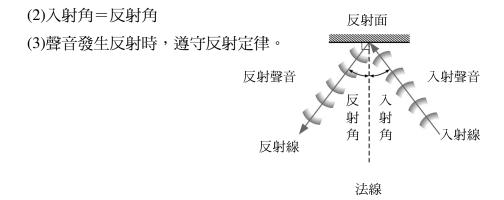


**週期**(T):做一次完整振動所需要的時間,單位:秒/次

**頻率**(f):每秒所做完整振動的次數,單位:次/秒、赫茲(Hz)

週期與頻率互為倒數, $T \times f = 1$ 

波速(v)=頻率(f)×波長( $\lambda$ )


**5、形成聲音的要素**:(1)發聲體快速振動,(2)要有介質。

6、(1)**聲波速率**:固態>液態>氣態;順風>逆風;濕度大>溼度小

(2)空氣中的**聲速公式**: v=331+0.6 t 公尺/秒 (t 為攝氏溫度)

#### 7、反射定律:

(1)入射線、反射線和法線會在同一平面上,入射線和反射線分別位於法線的兩側。



**8、聽到回聲的條件**:人耳要能判斷原聲和回聲,需間隔 0.1 秒。若在溫度 15℃時,聲速 340m/s,則發聲體與障礙面需距離 17 公尺(340×0.1÷2=17)。

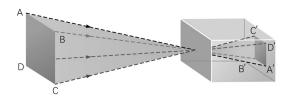
#### 9、減少回音干擾的方法:

- (1)裝設隔音板、吸音海綿。
- (2)演奏廳採用傾斜的天花板和不對稱的牆。
- (3)四周裝設尼絨布幔。

#### 10、影響聲音多變的三要素

|    | 意義             | 決定條件           | 單位            | 說明                                                                                             |
|----|----------------|----------------|---------------|------------------------------------------------------------------------------------------------|
| 響度 | 聲音的強弱<br>(大小聲) | 振幅大小<br>(能量大小) | 分貝,dB         | <ul><li>振幅愈大,響度愈大,聲音可傳愈遠。</li><li>聽診器的原理是利用聲音在細管中反射,維持響度。</li><li>每增加10分貝,聲音強度增加10倍。</li></ul> |
| 音調 | 聲音的高低          | 頻率大小<br>(振動快慢) | 赫(赫茲),<br>次/秒 | <ul><li>發聲體愈細、愈緊、愈短、愈薄頻率愈高,音調愈高。</li></ul>                                                     |
| 音品 | 聲音的特色          | 波形             |               | • 音叉波形簡單,常用於調音。                                                                                |

- **11、共振**:頻率相同的兩發聲體,一個振動時,另一個也會隨之振動發聲。例如:弦樂器的共鳴箱即利用此原理,增加響度。
- 12、(1)人耳可聽到的頻率範圍: 20~20000Hz。
  - (2)超聲波:超過 20000Hz,應用:醫院檢查身體或胎兒、聲納、蝙蝠飛行判斷四周物體距離、清洗機具。


# 主題六 光

#### 1、光直進的實例

- (1)影子:光線完全無法到達的區域為本影;部分光線到達的區域為半影。
- (2)排桌椅時,單眼沿桌沿望去,檢查是否整齊。

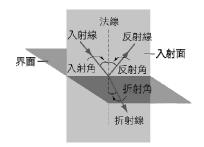
#### (3)針孔成像:

- 呈上下顛倒、左右相反的像。
- 針孔與光源愈近或針孔與呈像紙屏愈遠,像愈大。
- 針孔愈大,像愈模糊。
- 2、光的反射遵守反射定律:入射角=反射角
- **3、平面鏡成像**:大小相等、左右相反;物距=像距;虛像。



#### 4、凹面鏡(f:焦點)

| 會聚                                 | 成像性質   |               | 應用             | 註                   |
|------------------------------------|--------|---------------|----------------|---------------------|
| (1)平行主軸的光射入凹 面鏡,反射後會聚於             | 物在f外   | 倒立實像          |                | (1)實像:可用肉<br>眼看且可成像 |
| 無點上。<br>無點上。                       | 物在 f 上 | 不成像           | 太陽能集熱<br>器、化妝鏡 | 在紙屏上                |
| (2)由焦點發出的光經凹<br>面鏡反射後,會平行<br>主軸射出。 | 物在 f 內 | 異側成正立<br>放大虛像 | 、車前燈、<br>手電筒   | (2)虛像:只能用<br>肉眼看    |

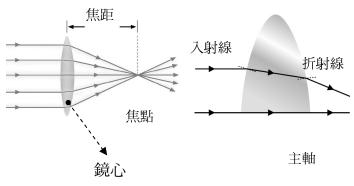

#### 5、凸面鏡

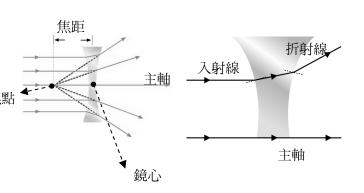
| 發散                                          | 成像性質                     | 應用                |
|---------------------------------------------|--------------------------|-------------------|
| 射向凸面鏡的光,經反射後<br>會發散開來,但垂直鏡面的<br>光會延原路徑反射回去。 | 鏡的另一側成正立縮小<br>虚像,可見視野較廣。 | 照後鏡、彎道架設的反射<br>鏡。 |

- **6、光的傳播速率**: 真空 $(3 \times 10^8 \text{ m/s}) > 22 = 3 \times 10^8 \text{ m/s}$
- 7、光的折射:當非垂直介面的光通過不同介質,因速率改變而改變行進方向。

#### 8、折射定律

- (1)光發生折射時,入射線、法線和折射線會在同一平面上。
- (2)光由慢介質進入快介質,偏離法線,入射角<折射角。 光由快介質進入慢介質,偏向法線,入射角>折射角。





#### 9、凸透鏡會聚

- (1)平行光經凸透鏡折射後會聚於焦點上。
- (2)射入凸透鏡的光線,經兩次折射後偏 向主軸。
- (3)通過鏡心不偏折。

#### 10、凹透鏡發散

- (1)平行光經凹透鏡折射後會發散,但這些 發散光線的延長線會相交於虛焦點上。
- (2)射入凹透鏡的光線,經兩次折射後偏離 主軸。
- (3)通過鏡心不偏折。







#### 11、透鏡的成像性質

| 單一透鏡 | 物位置     | 像位置       | 放/縮  | 正/倒 | 實/虚 |
|------|---------|-----------|------|-----|-----|
|      | 無窮遠處    | f上        | ——黑上 |     | 實像  |
|      | 2f 外    | f~2f 之間   | 縮小   | 倒立  | 實像  |
|      | 2f 上    | 2f 上      | 相等   | 倒立  | 實像  |
| 凸透鏡  | f~2f 之間 | 2f 外      | 放大   | 倒立  | 實像  |
|      | f上      | 不成像       |      |     |     |
|      | f內      | 同側,物的後方   | 放大   | 正立  | 虚像  |
| 凹透鏡  | 無窮遠處    | 同側焦點上     | 一點   |     | 虚像  |
| 二及观  | 鏡前      | 同側f內,物的前方 | 縮小   | 正立  | 虚像  |

#### 12、成像原理

(1)水晶體相當於凸透鏡,藉由睫狀肌調節焦距。

(2)物體發出的光線⇒水晶體折射後⇒成像在視網膜上,倒立縮小實像⇒ 視神經⇒大腦解釋為正立。

(3)眼睛的病變:

|    | (3) | <b>即及明月177</b> 万   | 変・      |           |              |
|----|-----|--------------------|---------|-----------|--------------|
|    |     | 病症                 | 症狀      | 原因        | 矯正           |
| 眼睛 |     | 近視眼                | 成像在視網膜前 | • 水晶體焦距過短 | 戴凹透鏡         |
|    |     |                    | ⇨看不清遠物  | • 眼球前後徑過長 | 無以二 125%     |
|    |     | <b>遠視眼</b> 成像在視網膜後 |         | • 水晶體焦距過長 | 載凸透鏡         |
|    |     | 这们以                | ⇨看不清近物  | • 眼球前後徑過短 | 無人           |
|    |     | 老花眼                | 成像在視網膜後 | 眼睛機能減退,無法 | 載凸透鏡         |
|    |     | 161600             | ⇨看不清近物  | 適當調節水晶體焦距 | <b>共从二边现</b> |

底片式 鏡頭為一組凸透鏡,所成的像為倒立縮小實像,落在底片上,底片上溴 照相機 化銀產生化學變化,而顯現影像。

物體在物鏡(凸透鏡)的 f~2f 之間,經過第一次折射,成像落在目鏡的 f 內,呈倒立放大實像。再經過目鏡(凸透鏡)的第二次折射,得到正立放大虛像,但對原物而言為倒立放大虛像。

複式 顯微鏡



**13、色散現象**:太陽光(白光)經過三稜鏡折射後,因各色光速率不同,導致折射角不同而

分成紅、橙、黄、綠、藍、靛、紫等色光。

14、光的三原色:紅、藍、綠。

#### 15、物體的呈色原理

| 物體   | 物的顏色  | 光與物體的關係      |  |
|------|-------|--------------|--|
|      | 白色    | 反射所有色光       |  |
| 不透明物 | 黑色    | 吸收所有色光       |  |
|      | 其他顏色  | 只反射該色的光,其他吸收 |  |
| 透明物  | 只透射該包 | 只透射該色的光,其他吸收 |  |



光的三原色與合成

# 主題七 溫度與熱

#### 1、溫度計

| 水銀溫度計    | 酒精溫度計    | 液晶溫度計    | 耳溫槍      |
|----------|----------|----------|----------|
| 沸點高,不易沸騰 | 熔點低,不易結凍 | 利用液晶隨溫度變 | 利用檢測腦內血管 |
| ,適合測高溫。  | ,適合測低溫。  | 化而變色的性質測 | 產生的紅外線輻射 |
|          |          | 量溫度。     | 以測量溫度。   |

2、溫標:溫度計上的單位刻度。常用溫標如下(1atm 下)

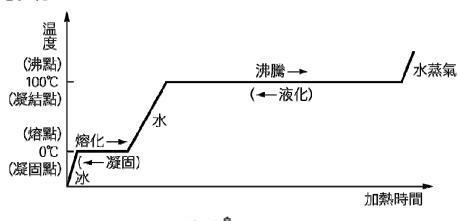
| 溫標       | 熔點    | 沸點     | 換算公式:                                                |
|----------|-------|--------|------------------------------------------------------|
| 攝氏溫標(℃)  | 0℃    | 100°C  | $^{\circ}$ E $-^{\circ}$ C $\times \frac{9}{2}$ + 22 |
| 華氏溫標(°F) | 32 °F | 212 °F | $^{\circ}F = ^{\circ}C \times \frac{3}{5} + 32$      |

3、熱量:高溫物體傳遞至低溫物體的能量多寡,單位:卡(cal)。

(1)**比熱**:使 1 克物質升高 1℃所需的熱量,單位:卡/克- $^{\circ}$ C(cal/g- $^{\circ}$ C)。

(2)**公式:H=M×S×**△T;熱量(cal)=質量(g)×比熱(cal/g- $\mathbb{C}$ )×溫度變化量( $\mathbb{C}$ )。

(3)比熱大的物質溫度不易升降;比熱小的物質溫度容易升降。


(4)熱平衡:熱量由高溫處傳至低溫處,直到溫度相等則達熱平衡。

※無熱量散失時,H放=H吸;有熱量散失時,H放=H吸+散失的熱量。

#### 4、熱的傳播方式

| <b>傳播</b><br>方式 | 定義                       | 適用物質                                                                      | 舉例                                                          |
|-----------------|--------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------|
| 傳導              | 兩物體接觸,熱<br>量由高溫傳遞至<br>低溫 | <ul><li>固體主要的傳熱方式</li><li>金屬導熱最佳,其中銀導熱最佳,其次為銅</li><li>液體、氣體熱傳導差</li></ul> | • 炒菜鍋用金屬的鍋面、木頭的把手                                           |
| 對流              | 熱量藉由物質流<br>動來傳播          | • 氣體、液體主要的傳熱<br>方式                                                        | <ul><li>煙囪的設計</li><li>冷氣裝高處,暖爐裝低處<br/>(熱流上升、冷流下降)</li></ul> |
| 輻射              | 熱不需要介質,<br>直接由熱源發散<br>出去 | • 不需介質皆可輻射                                                                | <ul><li>太陽將熱量傳至地球</li><li>夏天穿淡色衣服減少吸收輻射熱</li></ul>          |

#### 5、水的三態變化



**Van** を基測重點掃描理化 10

- (1)熔化、固化、凝固:固液共存;沸騰、液化、凝結:液氣共存。
- (2)昇華:固態直接變氣態,例如:碘、樟腦丸、乾冰。
- (3)汽化:
  - a、沸騰需達到沸點,劇烈的汽化由液體內部劇烈擾動。
  - b、蒸發:屬於緩慢的汽化,在任何溫度都會發生。蒸發由液體表面開始,溫度愈高、液體表面積愈大、濕度愈低,則蒸發愈快。

#### 6、熱漲冷縮

- (1)熱脹冷縮的程度:氣體>液體>固體。
- (2)舉例:雙金屬片開關(不同金屬片並在一起,溫度上升時會彎向膨脹係數小的一方)、鐵軌銜接處預留空隙。
- (3) 4℃的水熱脹冷也脹(4℃水密度最大,體積最小,升溫或降溫體積皆會膨脹)。

# 主題八 元素與原子

#### 1、金屬與非金屬的比較

- (1)金屬新切面有光澤,多為銀白色。大多具有高熔點且常溫下多呈固態,延展性與 導熱、導電性佳。
- (2)非金屬常溫下固、液、氣態皆有,易碎,多不易導電導熱。

#### 2、常見的金屬元素

| 元素        | 特性                                                                                         | 應用                                                                                 |
|-----------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| 金<br>(Au) | <ul><li>金黃色光澤,固態</li><li>活性最小,延展性最佳</li></ul>                                              | 製造飾品、錢幣、防腐蝕導線                                                                      |
| 銀<br>(Ag) | <ul><li>銀白色光澤,固態</li><li>導熱、導電性最佳</li></ul>                                                | <ul><li>製造飾品、錢幣</li><li>溴化銀是底片感光材料</li></ul>                                       |
| 銅<br>(Cu) | <ul><li>紅色,固態</li><li>導電性僅次於銀</li></ul>                                                    | <ul><li>常用於製造電線</li><li>青銅:銅錫的合金;黃銅:銅鋅的合金</li><li>金</li></ul>                      |
| 鋁<br>(Al) | <ul><li>銀白色,固態</li><li>容易氧化並形成緻密的氧化鋁,<br/>保護內部不再氧化</li></ul>                               | <ul><li>製造鋁罐、鋁門窗</li><li>鋁鎂合金質輕、導熱佳,可做為筆記型電腦機殼</li></ul>                           |
| 鐵<br>(Fe) | <ul><li>新切面銀白色,固態</li><li>高爐煉鐵所得為生鐵,含碳量高</li><li>熟鐵含碳量低,近純鐵</li><li>鋼含碳量介於生、熟鐵之間</li></ul> | <ul><li>生鐵適合鑄造;熟鐵適合鍛接;鋼適<br/>合鑄造亦適合鍛接</li><li>不鏽鋼是鋼、鎳、鉻的合金,可製造<br/>廚具、餐具</li></ul> |
| 汞<br>(Hg) | • 銀白色, <b>液態</b> ,俗稱水銀<br>• 熔點低,密度大                                                        | 水銀溫度計、水銀電池                                                                         |
| 鈦<br>(Ti) | <ul><li>銀白色,固態</li><li>於空氣中氧化後,表面形成保護膜,耐腐蝕</li></ul>                                       | <ul><li>二氧化鈦(鈦白粉)常做油漆、磁釉或立可白的原料</li><li>鈦合金質輕堅固,可用於植牙、飛機機身、人工骨骼</li></ul>          |

#### 3、常見的非金屬元素

| 元素 | 特性                                                                          | 應用                                                                       |
|----|-----------------------------------------------------------------------------|--------------------------------------------------------------------------|
| 碳  | <ul><li> 碳粉為黑色固態</li><li> 鑽石和石墨是同素異形體</li></ul>                             | <ul><li>石墨可導電,可做電池電極或鉛<br/>筆芯</li><li>鑽石硬度最高</li><li>活性炭可脫色、除臭</li></ul> |
| 硫  | <ul><li>黄色固態,俗稱硫黃</li><li>硫化氫有臭味,存在溫泉火山地區</li><li>二氧化硫有刺激味道,酸雨的成因</li></ul> | 可用來製造火藥、硫酸                                                               |
| 矽  | <ul><li>灰褐色固態</li><li>地殼中含量僅次於氧,常以二氧化矽或矽酸鹽形式存在</li></ul>                    | <ul><li>製造矽晶圓</li><li>玻璃原料中有含矽的化合物</li></ul>                             |

#### 4、原子理論的演進

|          | 原子說的內容:                                                        |
|----------|----------------------------------------------------------------|
|          | (1)物質由原子所構成,原子為最小粒子,不可再分割。                                     |
| 治口天      | (2)同一元素的原子具有相同質量和性質,不同元素的原子質量和性質不同。<br>(3)不同的元素能以簡單整數比例結合成化合物。 |
| 道耳吞      | (3)不同的元素能以簡單整數比例結合成化合物。                                        |
|          | (4)化學反應是原子重新排列成另一物質。反應中原子不會消失,也不會產生                            |
|          | 新原子。                                                           |
|          | (1)發現電子(西元 1897 年)。                                            |
| <u> </u> | (2)提出原子為均匀帶正電的球體,帶負電的電子則分布其中。                                  |
| 松銀頭      | (1)提出原子核帶正電,電子在核外環繞。(西元 1911 年)                                |
| 拉塞福      | (2)發現質子(西元 1919 年)。                                            |
| 查兌克      | 發現中子(西元 1932 年)。                                               |

#### 5、原子的構造



質子或中子的質量約為電子的 1840 倍 電中性的原子:質子數=電子數 原子的大小決定於電子的活動範圍

#### 6、原子符號的標示

<sup>4</sup><sub>2</sub>He 氦 <sup>A</sup>zX

A=質量數=質子數+中子數≒原子量

Z=原子序=質子數=電子數

A-Z=中子數

#### 7、週期表中同族元素有相似的化學性質,例如:

| 族   | 元素    | 性質                                                                                                                 |
|-----|-------|--------------------------------------------------------------------------------------------------------------------|
| 鹼金族 | 鈉、鉀   | 可與水產生劇烈反應,產生鹼性物質。<br>2Na+2H <sub>2</sub> O → 2NaOH+H <sub>2</sub><br>2K +2 H <sub>2</sub> O → 2KOH +H <sub>2</sub> |
| 鹼土族 | 鎂、鈣、鋇 | 與硫酸或碳酸反應,產生白色沉澱。                                                                                                   |
| 鈍氣  | 氦、氖、氩 | 活性小,化學性質安定,又稱惰性氣體、高貴氣體。                                                                                            |

# 主題九 化學式及化學反應式

# 1、常見的化學式和離子根價表

| 名稱                                                                                                            | 化學式                                        | 名稱                                                                                                                                                       | 化學式                                                 |  |
|---------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--|
| 氫氣                                                                                                            | H <sub>2</sub>                             | 氯化鈉                                                                                                                                                      | NaCl                                                |  |
| 氧氣                                                                                                            | $O_2$                                      | 氯化鈣                                                                                                                                                      | CaCl <sub>2</sub>                                   |  |
| 臭氧                                                                                                            | $O_3$                                      | 硝酸                                                                                                                                                       | HNO <sub>3</sub>                                    |  |
| 氮氣                                                                                                            | $N_2$                                      | 硫酸                                                                                                                                                       | H <sub>2</sub> SO <sub>4</sub>                      |  |
| 一氧化碳                                                                                                          | CO                                         | 碳酸                                                                                                                                                       | H <sub>2</sub> CO <sub>3</sub>                      |  |
| 二氧化碳                                                                                                          | $CO_2$                                     | 醋酸                                                                                                                                                       | CH <sub>3</sub> COOH                                |  |
| 二氧化硫                                                                                                          | $SO_2$                                     | 鹽酸                                                                                                                                                       | HCl                                                 |  |
| 一氧化氮                                                                                                          | NO                                         | 氫氧化鈉                                                                                                                                                     | NaOH                                                |  |
| 二氧化氮                                                                                                          | NO <sub>2</sub>                            | 氫氧化鈣                                                                                                                                                     | Ca(OH) <sub>2</sub>                                 |  |
| 二氧化錳                                                                                                          | MnO <sub>2</sub>                           | 氫氧化鉀                                                                                                                                                     | КОН                                                 |  |
| 氧化鈣(石灰)                                                                                                       | CaO                                        | 氨水                                                                                                                                                       | NH <sub>4</sub> OH                                  |  |
| 氧化鎂                                                                                                           | MgO                                        | 碳酸鈣(灰石)                                                                                                                                                  | CaCO <sub>3</sub>                                   |  |
| 氧化銅                                                                                                           | CuO                                        | 碳酸鈉(蘇打)                                                                                                                                                  | Na <sub>2</sub> CO <sub>3</sub>                     |  |
| 氧化鐵                                                                                                           | Fe <sub>2</sub> O <sub>3</sub>             | 碳酸氫鈉(小蘇打)                                                                                                                                                | NaHCO <sub>3</sub>                                  |  |
| 氧化鋁                                                                                                           | $Al_2O_3$                                  | 硫酸鈣(石膏)                                                                                                                                                  | CaSO <sub>4</sub>                                   |  |
| 酒精                                                                                                            | C <sub>2</sub> H <sub>5</sub> OH           | 碳酸鉀(草木灰)                                                                                                                                                 | K <sub>2</sub> CO <sub>3</sub>                      |  |
| 葡萄糖                                                                                                           | $C_6H_{12}O_6$                             | 硫酸銅                                                                                                                                                      | CuSO <sub>4</sub>                                   |  |
| 水                                                                                                             | H <sub>2</sub> O                           | 氯化銨                                                                                                                                                      | NH <sub>4</sub> Cl                                  |  |
| 過氧化氫(雙氧水)                                                                                                     | H <sub>2</sub> O <sub>2</sub>              | 硫酸銨                                                                                                                                                      | (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub>     |  |
|                                                                                                               |                                            | 子價數表                                                                                                                                                     |                                                     |  |
| +1                                                                                                            | 價                                          | -1                                                                                                                                                       | 價                                                   |  |
| H <sup>+</sup> (氫離子), Na <sup>+</sup> (鈉腐<br>NH <sub>4</sub> <sup>+</sup> (銨根), Ag <sup>+</sup> (銀腐           |                                            |                                                                                                                                                          | 子), Br (溴離子), Γ(碘<br>{), CH <sub>3</sub> COO (醋酸根), |  |
| +2                                                                                                            | 價                                          | -2                                                                                                                                                       | -2 價                                                |  |
| Mg <sup>2+</sup> (鎂離子), Ca <sup>2+</sup> (釺<br>子), Hg <sup>2+</sup> (汞離子), Ct<br>離子), Zn <sup>2+</sup> (鋅離子), | u <sup>2+</sup> (銅離子), Pb <sup>2+</sup> (鉛 | O <sup>2-</sup> (氧離子), S <sup>2-</sup> (硫離<br>CO <sub>3</sub> <sup>2-</sup> (碳酸根), SO <sub>4</sub> <sup>2-</sup><br>SO <sub>3</sub> <sup>2-</sup> (亞硫酸根) |                                                     |  |
| +3                                                                                                            | 價                                          | -3                                                                                                                                                       | 價                                                   |  |
| Fe <sup>3+</sup> (鐵離子), Al <sup>3+</sup> (鋁                                                                   | 離子)                                        | BO <sub>3</sub> <sup>3-</sup> (硼酸根), PO <sub>4</sub> <sup>3-</sup>                                                                                       | (磷酸根)                                               |  |

#### 2、常見的化學反應式:

(1)鎂帶燃燒:鎂+氧→氧化鎂

 $2Mg + O_2 \rightarrow 2MgO$ 

- (2)小蘇打加熱分解:碳酸氫鈉→碳酸鈉+二氧化碳+水 2NaHCO<sub>3</sub>  $\stackrel{\triangle}{\longrightarrow}$  Na<sub>2</sub>CO<sub>3</sub>+CO<sub>2</sub>+H<sub>2</sub>O
- (3)鋅片與鹽酸反應產生氫氣:鋅+鹽酸→氯化鋅+氫氣 Zn+2HCl→ZnCl<sub>2</sub>+H<sub>2</sub>↑
- (4)碳酸鈉+氯化鈣→碳酸鈣(白色沉澱)+氯化鈉 Na<sub>2</sub>CO<sub>3</sub>+CaCl<sub>2</sub>→ CaCO<sub>3</sub>+2NaCl
- (5)氧氣的製備:雙氧水→水+氧氣

(6)大理石滴到鹽酸產生二氧化碳

 $CaCO_3 + 2HCl \rightarrow CaCl_2 + H_2O + CO_2$ 

(7)哈柏法製氨:氮氣+氫氣→氨氣

$$N_2 + 3H_2 \xrightarrow{\text{Fe}_2O_3, 400^{\circ}C} 2NH_3$$

(8)氧化鈣加水→氫氧化鈣

$$CaO + H_2O \rightarrow Ca(OH)_2$$

澄清石灰水+二氧化碳→碳酸鈣+水

$$Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O$$

灰石加熱→石灰+二氧化碳

$$CaCO_3 \xrightarrow{\triangle} CaO + CO_2$$

- 3、物質發生化學反應時,常會有發光、發熱、沉澱或產生氣泡等現象。
- 4、熱與化學反應
  - (1)藍色含水硫酸銅晶體 ★ 白色無水硫酸銅粉末+水 放勢
  - (2)粉紅色含水氯化亞鈷 <del>▼ 数</del> 藍色無水氯化亞鈷+水 放執
- 5、**質量守恆定律**:化學反應前後,總質量不變。無論反應式是否發生在密閉容器中,

都會遵守質量守恆定律。化學反應遵守質量守恆定律,原子只進行重新排列,反應前

後,反應物與生成物之:

總質量 原子種類 原子動目 皆不變 農積 係數和



# 主題十 原子量、莫耳與化學計量

#### 1、原子量

- (1)原子量是以各元素原子質量互相比較數值而訂出的。
- (2)因為是質量比值,所以沒有單位。
- (3)國際上以碳12為標準。
- (4)常見元素的原子量: H=1、O=16、C=12、N=14、S=32、Na=23。
- **2、分子量**:分子中各組成原子的原子量總和算出,例如: $H_2O=1\times2+16=18$ 。 常見的分子量: $CO_2=44$ 、 $H_2SO_4=98$ 、NaOH=40、 $C_6H_{12}O_6=180$ 。
- 3、莫耳(mole):科學上用來表示物質所含粒子(原子、分子)數量的單位。
  - (1) 1mole=6×10<sup>23</sup> 個粒子數
  - (2)公式:

莫耳數 = 
$$\frac{粒子個數}{6\times10^{23}}$$
 莫耳數 =  $\frac{質量}{分子量(原子量)}$ 

 粒子個數 = 莫耳數×6×10<sup>23</sup>
 質量 = 莫耳數×分子量(原子量)

(3)例如:1 個水分子的質量 = 
$$\frac{1}{6 \times 10^{23}} \times 18 = 3 \times 10^{-23}$$
 克

1 莫耳  $CO_2$  中有  $6 \times 10^{23}$  個  $CO_2$  分子、 $6 \times 10^{23}$  個 C 原子、 $1.2 \times 10^{24}$  個 O 原子、質量為 44 克(相當於分子量)。

- 4、化學反應式中的係數比=莫耳數比=分子數比=氣體的體積比
- 5、化學計量計算

範例: 將8克的氫氣完全燃燒,可獲得幾克的水?消耗幾克的氧氣?

|      | $2H_2$                 | + | $O_2$        | <b></b> | $2H_2O$       |
|------|------------------------|---|--------------|---------|---------------|
| 係數比  | 2                      |   | 1            |         | 2             |
| 莫耳數比 | 2                      |   | 1            |         | 2             |
| 莫耳數  | $\frac{8}{2}$ = 4 mole |   | 2 mc         | ole     | 4 mole        |
| 質量   | 8克                     |   | 2×32<br>64 克 | =       | 4×18=<br>72 克 |

答:得到72克的水,消耗64克的氧氣

# 主題十一 電解質與常見酸、鹼、鹽

1、電解質定義:溶於水中可導電的化合物。

(1)電解質水溶液中,正離子所帶總電量=負離子所帶總電量,溶液呈電中性。

例如:每個氯化鈣解離出1個鈣離子和2個氯離子。每個鈣離子帶2個正電荷,每

個氯離子帶 1 個負電荷,因此鈣離子總電量=氯離子總電量。

(2)強電解質幾乎完全解離;弱電解質部分解離。

2、離子與原子:離子是原子核外電子轉移而形成,例如:

|         | 原子序 | 質子數 | 中子數 | 電子數      | 說明         |
|---------|-----|-----|-----|----------|------------|
| 鈉原子 Na  | 11  | 11  | 12  | 11       |            |
| 鈉離子 Na+ | 11  | 11  | 12  | 10(失去電子) | 離子與原子的化學性質 |
| 氯原子 Cl  | 17  | 17  | 18  | 17       | 不同         |
| 氯離子 Cl⁻ | 17  | 17  | 18  | 18(得到電子) |            |

#### 3、酸:物質溶於水可解離出 H<sup>+</sup>

- (1)酸可和活性大的金屬(例如:鋅、鎂、鋁、鐵)反應,產生氫氣。
- (2)酸與碳酸鈣反應產生二氧化碳。

#### (3)**常見的酸**:

|    | 酸性物質                                 | 特性                                                                                                                              | 用途舉例              |
|----|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------|
|    | 硫酸<br>H <sub>2</sub> SO <sub>4</sub> | <ul><li>強脫水性,沸點高,倒入水中放出大量的熱</li><li>化學工業之母</li></ul>                                                                            | 電池液、肥料、<br>製備其他酸類 |
| 強酸 | 硝酸<br>HNO <sub>3</sub>               | <ul><li>銅與濃硝酸反應產生 NO<sub>2</sub>,與稀硝酸反應產生 NO</li><li>日照會產生紅棕色有毒 NO<sub>2</sub>,需用棕色瓶裝</li><li>與鹽酸配成王水(體積比:一硝酸三鹽酸)</li></ul>     | 肥料、炸藥             |
|    | 鹽酸<br>HCl                            | <ul><li> 氯化氫氣體溶於水形成鹽酸</li><li> 濃鹽酸會逸出氯化氫,與水蒸氣結合形成酸霧</li><li> 可檢驗 NH<sub>3</sub> (NH<sub>3</sub>+HCl→NH<sub>4</sub>Cl)</li></ul> | 清洗金屬表面、<br>清潔劑    |
| 弱酸 | 醋酸<br>CH₃COOH                        | <ul><li>弱酸,乙醇發酵產物</li><li>冰醋酸(純醋酸)不含水,不解離,呈中性</li><li>食用醋含 3%~5%醋酸</li></ul>                                                    | 調味、染料             |

#### 4、鹼:電解質溶於水能游離出 OH-

(1)有澀味、具腐蝕性、有滑膩感、可以溶解油脂。

(2)常見的鹼:

|       | 鹼性物質                        | 俗名      | 特性                                                                                                       |
|-------|-----------------------------|---------|----------------------------------------------------------------------------------------------------------|
| 強鹼    | 氫氧化鈉<br>NaOH                | 燒鹼、苛性鈉  | <ul><li>白色固體,溶於水放熱,具強腐蝕性</li><li>易吸收 CO<sub>2</sub>、H<sub>2</sub>O 而潮解</li><li>可用於製造肥皂、清潔劑、疏通劑</li></ul> |
| PRAS. | 氫氧化鈣<br>Ca(OH) <sub>2</sub> | 熟石灰,石灰水 | 檢驗 CO <sub>2</sub> 、溫度愈高溶解度愈小                                                                            |
| 弱鹼    | 氫氧化銨<br>NH4OH               | 氨水      | <ul><li> 氨氣(NH<sub>3</sub>)易溶於水形成氨水</li><li> 有刺激性臭味,可用來消毒、殺菌</li></ul>                                   |

#### 5、鹽的製備

(1)酸鹼中和反應的產物,例如:

鹽酸與氫氧化鈉中和產生氯化鈉 HCl + NaOH→NaCl + H2O

(2)活性大的金屬與酸作用所得,例如:

鎂帶與鹽酸反應產生氯化鎂 Mg + 2HCl→MgCl<sub>2</sub>+ H<sub>2</sub>

(3)某些鹽與酸作用可產生另一種鹽類,例如:

碳酸鈣與醋酸反應產生醋酸鈣 CaCO3+2CH3COOH→(CH3COO)2Ca+CO2+H2O

#### 6、常見的鹽類

| 鹽類物質 | 化學式                             | 俗名      | 應用               |
|------|---------------------------------|---------|------------------|
| 氯化鈉  | NaCl                            | 食鹽      | 調味               |
| 硫酸銨  | $(NH_4)_2SO_4$                  |         | 氮肥               |
| 碳酸鈣  | CaCO <sub>3</sub>               | 灰石、大理石  | 貝殼可做裝飾品、大理石可用於建材 |
| 硫酸鈣  | CaSO <sub>4</sub>               | 石膏      | 石膏模、石膏像、豆腐       |
| 碳酸鉀  | K <sub>2</sub> CO <sub>3</sub>  | 草木灰     | 中和土壤酸性           |
| 碳酸鈉  | Na <sub>2</sub> CO <sub>3</sub> | 蘇打、洗滌鹼  | 清潔劑、製玻璃、硬水軟化     |
| 碳酸氫鈉 | NaHCO <sub>3</sub>              | 小蘇打、焙用鹼 | 滅火器、烘焙發粉、胃藥      |

#### 7、碳酸鈉與碳酸氫鈉

|      | 化學式                             | 外觀   | 水溶液酸鹼性 | 加酸                   | 加熱                 |
|------|---------------------------------|------|--------|----------------------|--------------------|
| 碳酸鈉  | Na <sub>2</sub> CO <sub>3</sub> | 白色固體 | 弱鹼     | 產生 CO <sub>2</sub> ※ | 不分解                |
| 碳酸氫鈉 | NaHCO <sub>3</sub>              | 白色固體 | 弱弱鹼    | 產生 CO <sub>2</sub> ※ | 產生 CO <sub>2</sub> |

- $Na_2CO_3 + 2HCl \longrightarrow 2NaCl + H_2O + CO_2$
- $NaHCO_3 + HCl \longrightarrow NaCl + H_2O + CO_2$

# 主題十二 酸鹼的濃度與酸鹼中和

**1、莫耳濃度**:每公升溶液中所含溶質莫耳數,常用〔〕表示,例如:0.5M 葡萄糖溶液可寫成〔 $C_6H_{12}O_6$ 〕=0.5M。

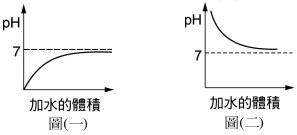
公式:莫耳濃度(M)= 溶質莫耳數 溶液體積(L)

**2、**25℃下,任何水溶液中,〔H<sup>+</sup>〕×〔OH<sup>-</sup>〕=10<sup>-14</sup>M<sup>2</sup>

#### 3、pH 值:

- (1)用來表示水溶液中氫離子的濃度
- (2)舉例:若〔 $H^+$ 〕= $10^{\text{-5}}M$ ,pH=5;〔 $H^+$ 〕=1= $10^0M$ ,pH=0;

 $(H^+) = 10^{-\square}M \cdot pH = \square$ 


(3)酸性溶液 pH < 7; 鹼性溶液 pH > 7; 中性溶液 pH=7

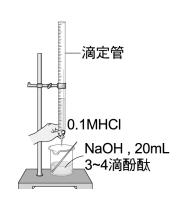


#### 4、酸鹼指示劑

|                     | 酸性                | 中性  | 鹼性              |
|---------------------|-------------------|-----|-----------------|
| 廣用試紙                | 紅、橙、黄<br>(愈偏紅色愈酸) | 綠   | 藍、紫<br>(愈偏紫色愈鹼) |
| <b>石蕊試紙</b> 藍色試紙變紅色 |                   | 不變色 | 紅色試紙變藍色         |
| 酚酞                  | 無色                | 無色  | 紅色              |
| 酚紅                  | 黃色                | 橙色  | 紅色              |

5、稀釋:酸加水稀釋,pH 值愈來愈大,最後趨近於7,如下圖(一)所示;鹼加水稀釋,pH 值愈來愈小,最後趨近於7,如下圖(二)所示。




- **6、酸鹼中和**:酸+鹼——→鹽+水 (放熱反應)
  - (1)原理:酸鹼中和反應中,實際參與反應的離子為酸提供的  $H^{+}$ 和鹼提供的  $OH^{-}$ ,反 應產生水(  $H^{+}+OH^{-}\longrightarrow H_{2}O$  )。
  - (2)酸中的負離子和鹼中的正離子仍存在於溶液中,待溶液蒸乾後,形成鹽類析出。
  - (3)酸鹼滴定實例:用鹽酸來滴定氫氧化鈉
    - 酚酞指示劑滴入氫氧化鈉(待測溶液)燒杯中
    - 慢慢滴入鹽酸直到變色且維持 10 秒不改變,即達滴 定終點。記錄使用的鹽酸體積(40mL)
    - 酸中 H<sup>+</sup>的莫耳數=鹼中 OH<sup>-</sup>的莫耳數

$$M_{\mathfrak{B}}V_{\mathfrak{B}} = M_{\mathfrak{B}}V_{\mathfrak{B}}$$

 $0.1(M) \times 40(mL) = M_2 \times 20(mL)$ ,  $M_2 = 0.2M$ 

求得待測氫氧化鈉濃度為 0.2M

- (4)生活中的酸鹼中和:
  - 被蚊蟲叮咬可塗氨水或肥皂水來中和蚊蟲分泌物(蟻酸)。
  - 農民收割後燃燒稻草,灰燼中含有草木灰碳酸鉀,可中和土壤的酸化。
  - 胃藥的成分有氫氧化鎂等鹼性成分,可中和胃酸。



#### 主題十三 反應速率與化學平衡

1、反應速率=單位時間內反應物的消耗量或生成物的生成量,通常以時間的倒數表示。

#### 2、影響反應速率的因素

| 因素       | 說明                                                                                                                                                  |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 物質<br>本性 | 有些物質易反應,有些則不易反應。<br>例如:鈉與氧劇烈反應,但鐵的氧化緩慢。                                                                                                             |
| 濃度       | 反應物濃度愈大時,反應速率愈快。<br>例如:碳酸鈣在 1M 的鹽酸中反應產生 CO <sub>2</sub> 的速率較在 0.1M 鹽酸中快。                                                                            |
| 表面積      | 顆粒越小,接觸表面積愈大,反應速率愈快。<br>例如:將木材削成細條較整塊木頭易燃燒。                                                                                                         |
| 溫度       | (1)溫度愈高,反應速率愈快。<br>實驗:硫代硫酸鈉與鹽酸反應產生黃色硫沉澱。記錄不同溫度下,定量硫<br>(完全蓋住十字)生成的時間,結果顯示,溫度愈高,生成硫的速率愈快。<br>(2)反應速率與溫度並非正比關係。<br>(3)舉例:食物放入冰箱較不易腐敗、汽油一經點火達燃點,即劇烈燃燒。 |
| 催化劑      | (1)反應中能加快反應速率,但反應後性質和質量均不變。<br>(2)催化劑不能改變生成物的總產量、平衡係數與平衡狀態。<br>(3)生物體內的催化劑稱為酶或酵素。<br>(4)舉例:雙氧水分解,使用二氧化錳作為催化劑。                                       |

**3、可逆反應**:正、逆兩方可同時進行的反應。

**4、反應平衡**:正反應速率=逆反應速率,影響反應平衡的因素有:濃度、溫度、壓力… 等。

 $(1)2K_2CrO_4$ (鉻酸鉀) +  $H_2SO_4$  与  $K_2Cr_2O_7$ (二鉻酸鉀)+  $H_2O$  +  $K_2SO_4$ 

黄色 橘色

\*加酸反應向右變橘色,加鹼反應向左變黃色

(2)Br<sub>2</sub>(溴分子) + H<sub>2</sub>O 与 H<sup>+</sup>+ Br<sup>-</sup>(溴離子)+ HBrO

紅色 無色

\*加酸反應向左變紅色,加鹼反應向右變無色

(3)N<sub>2</sub>O<sub>4</sub> (四氧化二氮) ≒ 2NO<sub>2</sub> (二氧化氮)

無色 紅棕色

\*加熱反應向右紅棕色變濃,降溫反應向左顏色變淡

(4) CaCO<sub>3</sub> (碳酸鈣) + 2HCl ≒ CaCl<sub>2</sub> (氯化鈣) + H<sub>2</sub>O + CO<sub>2</sub> (氣體)

\*加壓反應向左 CO2 減少,壓力減小反應向右 CO2 增加



#### 主題十四 氧化還原

1、元素對氧活性大小排列(由大至小):

鉀鈉鈣鎂鋁 碳鋅鉻鐵錫鉛氫 銅汞銀鉑金

2、氧化反應:物質與氧結合,生成氧化物的反應。

(1)金屬氧化物溶於水→鹼性;非金屬氧化物溶於水→酸性。

(2)活性大的元素氧化物較安定;活性小的元素氧化物較不安定。

(3)元素的氧化:

| 元素 | 元素顏色 | 燃燒火燄 | 氧化物             | 氧化物溶於水產物                          |
|----|------|------|-----------------|-----------------------------------|
| 鎂  | 銀白色  | 強烈白光 | MgO             | Mg(OH)2 鹼性                        |
| 鋅  | 銀白色  | 黄綠色  | ZnO             | Zn(OH)2 鹼性                        |
| 銅  | 紅色   | ×    | CuO             | ×                                 |
| 硫  | 黄色   | 藍紫色  | $SO_2$          | H <sub>2</sub> SO <sub>3</sub> 酸性 |
| 磷  | 暗紅色  | 黄白色  | $P_4O_{10}$     | H <sub>3</sub> PO <sub>4</sub> 酸性 |
| 碳  | 黑色   | 金黃色  | CO <sub>2</sub> | H <sub>2</sub> CO <sub>3</sub> 酸性 |

3、還原反應:氧化物失去氧的反應

#### 4、氧化劑與還原劑:

| 氧化劑 | 反應中使另一物質氧化                                            | 本身被還原                                |
|-----|-------------------------------------------------------|--------------------------------------|
| 還原劑 | 反應中使另一物質還原                                            | 本身被氧化                                |
|     | 氧化反應與還原反應必相伴發生                                        |                                      |
| 舉例  | 2Mg + CO <sub>2</sub> → 2MgO+C<br>本身氧化, 本身還原,<br>為還原劑 | • 活性: Mg>C<br>• 反應後於集氣瓶壁<br>上附著黑色的 C |

- **5、金屬的冶煉**: 鋅、鐵、鉛、銅等金屬利用碳將金屬氧化物還原,因為碳的活性較這 些金屬大,且價格便宜。
- 6、冶鐵:鐵礦(氧化鐵)利用高爐煉鐵

| 氧化劑           | 鐵礦(氧化鐵)                                                                                    | • 高爐所煉的鐵為生鐵                            |
|---------------|--------------------------------------------------------------------------------------------|----------------------------------------|
| 還原劑           | C(煤焦)、CO(煤焦燃燒不完全)                                                                          | · 一一 · 一 · 一 · 一 · 一 · 一 · 一 · 一 · 一 · |
| 反應            | $2Fe_2O_3 + 3C \longrightarrow 4Fe + 3CO_2$<br>$Fe_2O_3 + 3CO \longrightarrow 2Fe + 3CO_2$ | - 造<br>- 熟鐵:接近純鐵,富延展                   |
| 熔劑(灰石<br>或矽土) | 結合鐵礦中的雜質形成熔渣,熔渣可<br>浮於生鐵表面,防止鐵再被氧化                                                         | 性,適合鍛接                                 |

#### 7、生活中的氧化還原反應

| 常見的氧化還原反應 | 常見的氧化劑      | 常見的還原劑                     |
|-----------|-------------|----------------------------|
| 鐵生鏽、光合作用、 | 氧氣、次氯酸鈉漂白水、 | 煤焦、氫氣、CO、SO <sub>2</sub> 、 |
| 呼吸作用、燃燒   | 過氧化氫        | 抗氧化劑(維生素 C、E)              |

#### 主題十五 有機化合物

- 1、有機化合物:含有碳的化合物稱為有機化合物,不含碳的化合物為無機化合物。但 CO、CO₂、碳酸及碳酸鹽類(如:碳酸鈉)、氰化物(如:KCN、HCN)屬無機化合物。
- 2、有機化合物主要元素為碳,其次為氫。也常含有氧、氮、硫、磷、鹵素等。
- 3、若有機化合物組成元素相同,但排列方式不同,則性質也會不同。例如:甲醚 (CH₃OCH₃)與乙醇(C₂H₅OH)分子式皆為 C₂H₀O,但性質差異極大。
- 4、煙類:只含有碳、氫的有機化合物

| 特性   | <ul><li> 依碳原子結合構造分為鏈狀與環狀烴</li><li> 不易溶於水</li><li> 有氣態、液態、固態(碳數少的常溫下為氣態,碳數稍多的為液態,碳數更多的為固態)</li></ul> |
|------|-----------------------------------------------------------------------------------------------------|
|      | • 燃燒生成 CO <sub>2</sub> 和 H <sub>2</sub> O                                                           |
|      | • 烷 C <sub>n</sub> H <sub>2n+2</sub>                                                                |
|      | (1)天然氣的主要成分:甲烷 CH4                                                                                  |
| 常見烴類 | (2)液化石油氣的主要成分:丙烷 C₃H8                                                                               |
|      | • 烯,如乙烯 C <sub>2</sub> H <sub>4</sub>                                                               |
|      | • 炔,如乙炔 C <sub>2</sub> H <sub>2</sub>                                                               |

- 5、**醇類**:通式【 $C_nH_{2n+1}OH$ 】, 煙中的 H 被 OH 取代
  - (1)甲醇(CH<sub>3</sub>OH):俗稱木精、變性酒精,有毒,工業上使用會加入有色染料。
  - (2) 乙醇(C<sub>2</sub>H<sub>5</sub>OH): 俗稱酒精
    - 葡萄糖發酵製得,C<sub>6</sub>H<sub>12</sub>O<sub>6</sub><sup>酵母菌</sup>→2C<sub>2</sub>H<sub>5</sub>OH+2CO<sub>2</sub>。
    - 無色、中性、易燃,可做染料及溶劑。
    - 可做消毒劑,70~75%酒精濃度殺菌效果最好。
- $6 \cdot$ 有機酸類:通式【 $C_nH_{2n+1}COOH$ 】, 烴中的 H 被 COOH(羧基)取代。
  - (1)n=0,甲酸 HCOOH,俗稱蟻酸,有刺激臭味,蜜蜂螞蟻叮咬時會分泌蟻酸引起人體紅腫發癢。
  - (2)n=1,乙酸 CH<sub>3</sub>COOH,俗稱醋酸
    - 酒精於醋酸菌作用下氧化成乙酸, $C_2H_5OH + O_2 \stackrel{\text{tited}}{\longrightarrow} CH_3COOH + H_2O$ 。
    - 食用醋含 3~5%的乙酸。
    - 可解離出 H<sup>+</sup>,可導電,成弱酸性,但冰醋酸為純醋酸,不導電,呈中性。
- 7、酯類:有機酸和醇類反應,產生具特殊氣味(如:水果香、花香)的酯類。
  - (1)難溶於水,密度比水小。
  - (2)油脂是脂肪酸和丙三醇所合成的酯類。
  - (3)酯化反應實例:

乙酸 + 戊醇 
$$\xrightarrow{\text{H}_2\text{SO}_4}$$
 乙酸戊酯 + 水  $\text{CH}_3\text{COO}\text{H} + \text{C}_5\text{H}_{11}\text{OH} \xrightarrow{\text{H}_2\text{SO}_4} \text{CH}_3\text{COOC}_5\text{H}_{11} + \text{H}_2\text{O}$ 



# 主題十六 聚合物與清潔劑

1、聚合物:由許多單體連結而成的巨大分子,原子數目多,分子量很大。

| 來源    | 舉例                                 |  |  |
|-------|------------------------------------|--|--|
|       | • 動物性:動物性蛋白質(由胺基酸聚合而成,含 C、H、O、N、S) |  |  |
| 天然聚合物 | 、核酸、肝醣                             |  |  |
|       | • 植物性:澱粉、纖維素(葡萄糖聚合而成)、天然橡膠         |  |  |
|       | • 塑膠:PVC、PE                        |  |  |
| 合成聚合物 | • 合成纖維:耐綸                          |  |  |
|       | • 合成橡膠                             |  |  |

#### 2、合成聚合物的構造

| 分類    | 說明                                                    | 構造 | 舉例                               |
|-------|-------------------------------------------------------|----|----------------------------------|
| 鏈狀聚合物 | <ul><li>又稱熱塑性聚合物</li><li>加熱後可重新塑形</li></ul>           |    | 聚乙烯(PE)、聚氯乙烯(PVC)、耐綸、保<br>利綸、寶特瓶 |
| 網狀聚合物 | <ul><li>又稱熱固性聚合物</li><li>加熱後不熔化,不能<br/>重新塑形</li></ul> | H  | 輪胎、橡膠、尿素甲<br>醛樹脂                 |

# 3、衣料纖維

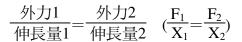
|                  | 來源                                   | 成份   | 成品      | 燃燒       |
|------------------|--------------------------------------|------|---------|----------|
| 工品级级             | 植物纖維                                 | 纖維素  | 麻、棉     | 有紙張燃燒的氣味 |
| 天然 <b>纖維</b><br> | 動物纖維                                 | 蛋白質  | 皮、毛、蠶絲  | 有羽毛燃燒的臭味 |
| 人造纖維             | 再生纖維(人造<br>絲):由植物纖<br>維溶解後,抽絲<br>而得。 | 纖維素  | 嫘縈、醋酸纖維 | 有紙張燃燒的氣味 |
|                  | 合成纖維                                 | 石化原料 | 耐綸      | 纖維末端結成小球 |

#### 4、常用清潔劑

| 清潔劑   | 製造                               | 去汙原理     |
|-------|----------------------------------|----------|
|       | 舉例:椰子油+氫氧化鈉───┣脂肪                | 汙脫離衣物表面。 |
| 合成清潔劑 | 由石化原料製成,為石油化學工業的<br>產品,如洗髮精、洗衣精。 | 水水       |

# 主題十七 力與壓力

1、力的效應:(1)形變:如彈簧、皮球壓扁(2)運動狀態的改變,如車子移動、撞球


伸長量

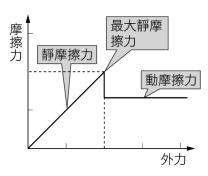
2、接觸力:推拉力、摩擦力、浮力、彈力 非接觸力:萬有引力、磁力、靜電力

3、力的單位:公斤重(kgw)、公克重(gw)、牛頓(N)

4、力的測量工具:彈簧

**虎克定律**:彈簧在彈性限度內受力時,外力與伸 長量成正比。






6、摩擦力:存在於兩接觸面之間,阻止物體運動的力。

(1)**靜摩擦力**:物體受力仍靜止不動,此時施力=摩擦力。

(2)**最大靜摩擦力**:物體受力恰可運動時,此時受最大 靜摩擦力,為一定值。

(3)**動摩擦力**:物體運動時所受摩擦力,小於最大靜摩 擦力,為一定值。



全

長

#### 7、影響最大靜摩擦力的因素

(1)接觸面的性質:愈粗糙,最大靜摩擦力愈大,物體越難拉動。

(2)接觸面所受垂直正向力:正向力愈大,最大靜摩擦力愈大。

8、生活中的摩擦力

| 需要摩擦力 | 使用筷子、行走     |
|-------|-------------|
| 增加摩擦力 | 車胎的紋路、釘鞋    |
| 減少摩擦力 | 以滾動代替滑動,如輪子 |

9、浮力:物體在液體中所減輕的重量=排開的液重

公式:  $B=V_{T}\times D_{w}$ ; 浮力=物體在液面下的體積 $\times$ 液體的密度

| 沉體 | 物體密度≧液體 | $B = V_{28} \times D_{8}$ |
|----|---------|---------------------------|
| 浮體 | 物體密度<液體 | B=W(物重)<br>=V T×D 液       |

#### 10、浮力的應用

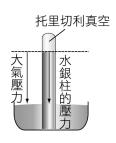
(1)魚利用體內的魚鰾,調整整體的密度,以控制沉浮。

(2)熱氣球、天燈:浮力大於重量故上飄。



- 11、壓力定義:物體在單位面積上所受垂直方向的作用力
  - (1)單位:gw/cm²、kgw/m²

$$(2)$$
公式: $P = \frac{F}{A}$ ;壓力 $= \frac{垂直正向力}{受力面積}$ 


#### 12、液體壓力


- (1)靜止的液體中,任一點皆受各方向大小相等的水壓,即液體壓力沒有特定方向。
- (2)公式:P=h×D;壓力=液體深度×液體密度
- **13、連通管原理**:無論容器形狀、大小與粗細,連通管內各容器液面會維持在同一水平面 。應用:自來水供應系統、噴泉。
- **14、帕斯卡原理**:在密閉容器內的液體,任何一處受到壓力時,此壓力會以相同大小傳到 容器和液體的其他部分,稱為帕斯卡原理。

公式:
$$\frac{F_{\pm}}{A_{\pm}} = \frac{F_{\pm}}{A_{\pm}}$$

應用例子:千斤頂、油壓剎車、液體起重機。

- 15、大氣壓力:大氣壓力來自單位面積上空氣的重量。
  - (1)1 大氣壓(1atm)=76cm-Hg=760mm-Hg=1033.6gw/cm<sup>2</sup>=1013 百帕。
  - (2)高山上氣壓較平地低,沸點較低,因此食物不易煮熟。
  - (3)托里切利實驗:水銀柱的壓力=大氣壓力,管子粗細、長短和傾斜角度不會影響水 銀柱的垂直高度。







#### (4)生活中的大氣壓力:

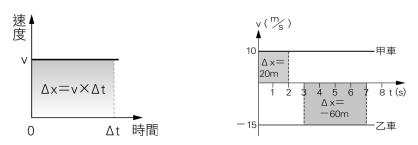
- 用吸盤懸掛物體。
- 吸管喝果汁。
- 吸塵器吸取灰塵。

# 主題十八 直線運動

1、位置:描述物體位置時,要先找一固定參考點,再說明物體相對於參考點的方向及距離。例如: A 點在 B 點南方 20m,表示以 B 點為參考點。

2、路程:移動的總路徑長,不具方向性。

**位移**(x、s):位置變化量,只看起點與終點的直線距離,具方向性。


3、速率:單位 m/s、km/hr,沒有方向性

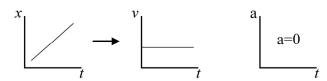
| 平均速率  | 單位時間內經過的路程,平均速率=                      |
|-------|---------------------------------------|
| 瞬時速率  | 在極短的時間內,物體運動的平均速率,如:測速照相的速率,公<br>路速限。 |
| 等速率運動 | 物體在運動過程中,任何時刻都具有相同速率。                 |

4、速度:單位 m/s、km/hr,具有方向性

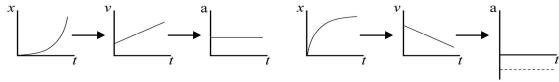
| 平均速度  | 單位時間內的位置變化量,平均速度= 位移 經歷時間。                                           |
|-------|----------------------------------------------------------------------|
| 瞬時速度  | 在極短的時間內,物體運動的平均速度。                                                   |
| 等速度運動 | <ul><li>物體在運動過程中,任何時刻都具有相同速度,必為直線運動。</li><li>等速度運動必為等速率運動。</li></ul> |

5、位移興速度: v-t 圖下所圍的面積等於位移大小。




6、加速度運動:物體的速度隨時間改變的運動。

加速度的單位: $m/s^2 \cdot cm/s^2$ ,有方向性


| 平均<br>加速度        | 單位時間內的速度變化量,平均加速度= 速度變化量。 經歷時間                                                                            |
|------------------|-----------------------------------------------------------------------------------------------------------|
| <b>瞬時</b><br>加速度 | 在極短的時間內,物體運動的平均加速度,簡稱加速度。                                                                                 |
| 等加速              | <ul><li>物體在運動過程中,加速度保持一定,瞬時加速度=平均加速度。</li><li>等加速度運動不一定是直線運動,例如拋體運動。</li><li>等加速度運動公式:</li></ul>          |
| 度運動              | $v=v_0+at$<br>$s=v_0t+\frac{1}{2}at^2$<br>$v$ 速度、 $v_0$ 初速度<br>a 加速度、 $t$ 經歷時間、 $s$ 位移<br>$v^2=v_0^2+2as$ |

#### 7、x-t 圖、v-t 圖、a-t 圖

(1)等速度運動



(2)等加速度運動



\*加速度與速度同向,愈來愈快

\*加速度與速度反向,愈來愈慢

- 8、自由落體運動:物體運動過程中只受地球引力作用,不受其他作用力影響。
  - (1)自由落體的加速度為重力加速度,以g表示。g=9.8m/s<sup>2</sup>

(2)計算公式:設初速度為  $0, v = gt; v^2 = 2gs; s = \frac{1}{2}gt^2$ 

# 主題十九 牛頓三大運動定律

- 1、牛頓三大運動定律
  - (1)**牛頓第一運動定律:慣性定律**,合力=0 或物體不受外力時,物體靜者恆靜,動者 恆做等速度直線運動。
  - (2)**牛頓第二運動定律**:物體受外力作用時,會產生加速度。**F=ma**,力的方向為加速度方向,不一定等於速度方向。
  - (3)**牛頓第三運動定律:作用力與反作用力定律**。作用力與反作用力大小相等、方向相 反、作用在同一直線不同物體上,同時發生同時消失,不能互相抵消。

舉例:【書本受重力】的反作用力為【書本吸引地球的引力】

【繩子拉彈簧】的反作用力為【彈簧拉繩子的力】

- **2、力的單位**:牛頓(N)。1kgw=9.8N
- 3、圓周運動:物體以一固定點為中心繞圓運動,若速率固定則為等速率圓周運動。
  - (1)向心力恆指向圓心,加速度恆指向圓心,因此方向一直改變,故非等速度運動、等加速度運動。
  - (2)圓周運動的瞬時速度方向為切線方向。
- **4、萬有引力**:任何兩物體之間,彼此皆互相吸引,這種引力為萬有引力  $F = \frac{G \times M \times m}{r^2}$  (萬有引力的大小與物體質量乘積成正比,與距離平方成反比)。



# 主題二十 功與機械

1、功(W)是指物體受力期間,外力大小與物體沿施力方向位移的乘積。

 $W=F\times S$ ;功=外力×位移,單位:焦耳、N-m

| 正功  | 外力的方向與物體移動方向相同,如:推行李向前行。           |
|-----|------------------------------------|
| 負功  | 外力的方向與物體移動方向相反,如:摩擦力作功。            |
| 不作功 | 外力的方向與物體移動方向垂直,如:提著行李向前行、<br>圓周運動。 |

 $2 \cdot$  功率 =  $\frac{\text{外力所作的功}}{\text{經歷的時間}}$  ;  $p = \frac{w}{t}$  , 單位:瓦特  $w \cdot$  焦耳/秒(J/s)

3、能量的單位:卡(cal)、焦耳(1卡=4.2 焦耳) 能量只有大小沒有方向。

 $4 \cdot$ **重力位能** U: 高度差而具有的能,U = mgh。

**彈力位能**:物體因形變而儲存有可作功的能量。

動能  $E_k$ : 運動中的物體所具有的能, $E_k = \frac{1}{2} m v^2$ 。

#### 5、能量守恆

(1)外力作功推物體:

水平速度變化:功轉換成動能 $\Rightarrow$ F $\times$ S $=\frac{1}{2}$ m $v^2$ 。

垂直高度變化:功轉換成位能⇒F×S=mgh。

(2)物體自高處靜止落下:位能轉換成動能⇒ $mgh = \frac{1}{2}mv^2$ ,同自由落體  $v^2 = 2gh$  公式。

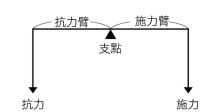
(3)有摩擦力:物體所增加的動能或位能=外力作功-摩擦力作功。

\*把握原則:遵守能量守恆定律,就可以功能互換。

6、力矩:用來描述轉動物體難易程度的物理量,單位:kgw-m、N-m。

(1)力矩=力臂×外力; L=d x F

(2)力矩有方向性,分成:順時鐘力矩與逆時鐘力矩。


(3)力的作用線與槓桿垂直時,力臂最長,轉動效果最大。

**7、靜力平衡**: (1)合力矩=0 不轉動,為轉動平衡。(2)合力=0 不移動,為移動平衡。

8、槓桿原理:槓桿處平衡狀態時:

施力產生的力矩=抗力產生的力矩

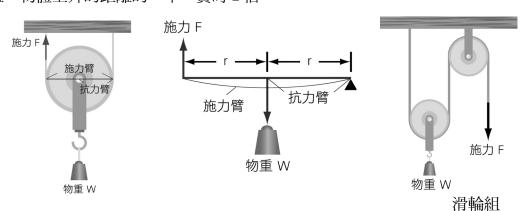
即施力x施力臂=抗力x抗力臂



9、簡單機械:使用機械可以省力、省時,但無法省功。

(1) **槓桿**:施力臂>抗力臂⇒省力費時;施力臂<抗力臂⇒費力省時。

|    | 第一類槓桿                  | 第二類槓桿              | 第三類槓桿                   |
|----|------------------------|--------------------|-------------------------|
| 構造 | 支點在中間                  | 抗力點在中間             | 施力點在中間                  |
| 優點 | 可省時或省力或改<br>變施力方向      | 必省力(費時)            | 必省時(費力)                 |
| 舉例 | 剪刀<br>天平<br>起釘器<br>蹺蹺版 | 裁紙刀<br>開瓶蓋器<br>釘書針 | 麵包夾<br>筷子夾菜<br>掃帚<br>鑷子 |

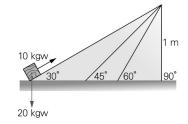

#### (2)輪軸:以軸心為支點。

a、施力在輪上:省力費時;輪半徑×施力=軸半徑×抗力,如:喇叭鎖。 b、施力在軸上:費力省時;輪半徑×抗力=軸半徑×施力,如:擀麵棍。

#### (3)滑輪:

a、定滑輪:不省力不省時,只改變了施力方向。

b、動滑輪:滑輪直徑×施力=滑輪半徑×物重,可省一半的力。但施力上拉的距離=物體上升的距離的一半,費時 2 倍。




(4)斜面:利用斜面可省力,但費時,也不省功,如無障礙坡道。

施力 
$$F_{30}$$
  $<$   $F_{45}$   $<$   $F_{60}$   $^{\circ}$ 

物體位移 \$30°>\$45°>\$60°

作功  $F_{30}$  ×  $S_{30}$  =  $F_{45}$  ×  $S_{45}$  =  $F_{60}$  ×  $S_{60}$ 



(5)螺旋:是斜面的應用, 螺紋愈密、螺距愈小愈省力。



# 主題二十一 電與生活

#### 1、靜電感應與起電

|      | 說明                                                                       |
|------|--------------------------------------------------------------------------|
| 摩擦起電 | 兩絕緣體互相摩擦後,因表面電荷發生轉移而使兩物體帶相反電性。<br>舉例:(1)絲絹帶負電,玻棒帶正電。(2)毛皮帶正電,塑膠尺帶負電。     |
| 靜電感應 | 將帶電物體接近不帶電導體時,會使不帶電導體因感應而發生正負電<br>荷暫時分離的現象。                              |
| 感應起電 | 先以帶電物體接近金屬塊使之發生靜電感應,以手接觸金屬塊(接地)使<br>負電荷轉移到金屬塊,然後把手移開,再移開帶電物體,則金屬塊帶<br>電。 |
| 接觸起電 | 感應起電過中,不接地,而是將帶電物體短暫接觸金屬塊,使負電荷轉移,則金屬塊帶電。                                 |

#### 2、電量:電荷的多寡

(1)單位:庫侖(C)

(2)1 個電子或質子所帶電量為  $1.6\times10^{-19}$  庫侖,稱為 1 個基本電荷 e。任何帶電體電量皆為基本電荷的整數倍,1 庫侖= $6.24\times10^{18}$  個電子或質子所帶的總電量。

3、導體:電子可以在原子間自由移動者,例如:金屬。

**絕緣體**:電子不能在原子間自由移動,例如:塑膠、毛皮。

#### 4、電壓、電流、電阻

|                  | 說明                                                                                                                                              | 單位        | 串聯與並聯                                                     |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------------------------------------|
| 電壓               | 又稱電位差,可驅使電子在導線中流動。                                                                                                                              | 伏特        | 串聯:V相加                                                    |
| (V)              |                                                                                                                                                 | (V)       | 並聯:V相等                                                    |
| <b>電流</b><br>(I) | <ul> <li>單位時間內經過導線某一截面的電量公式: I=Q<br/>公式: I=Q<br/>t</li> <li>電流方向是正電荷的流動方向(假想,實際上正電荷不會流動)。</li> <li>電子流是負電荷的流動。</li> </ul>                       | 安培<br>(A) | 串聯:I 相等<br>並聯:I 相加                                        |
| 電阻               | <ul> <li>當電子在導體中移動時,電子的運動會受到阻礙,此阻礙即為電阻。</li> <li>歐姆定律: R = V/I (電阻固定,電壓和電流成正比)</li> <li>(1)一般電阻器、電線遵守歐姆定律</li> <li>(2)二極體、電晶體不遵守歐姆定律</li> </ul> | 歐姆        | 串聯:R 相加                                                   |
| (R)              |                                                                                                                                                 | (Ω)       | 並聯: $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$ |

#### 5、電錶儀器

|      | 伏特計            | 安培計            |
|------|----------------|----------------|
| 連接方式 | 與待測電器並聯使用      | 與待測電器串聯使用      |
| 使用方法 | • 由大至小逐漸改變測量範圍 | • 由大至小逐漸改變測量範圍 |
| 使用万伍 | • 正接電池正、負接電池負  | • 正接電池正、負接電池負  |

6、電能(E):電流通過電器,將電能轉換成光能和熱能。

公式:
$$E=QV=IV\ t=I^2R\ t=\frac{V^2\ t}{R}$$
;單位: $J(焦耳)$ 。

7、電功率(P):單位時間內,電源提供的電能或電器消耗的電能

公式:
$$P = \frac{E}{t} = IV = I^2R = \frac{V^2}{R}$$
;單位: $w$ (瓦特)

※燈泡的電功率愈大,愈耗能,愈亮。

#### 8、電的產生

| 來源   | 原理                                            | 原料        | 註                                  |
|------|-----------------------------------------------|-----------|------------------------------------|
| 火力發電 | 燃燒燃料→水加熱成蒸汽→推動<br>渦輪機→發電機發電                   | 重油<br>或煤  |                                    |
| 核能發電 | 核反應器發生核分裂反應,放出<br>大量能量→水加熱成蒸汽→推動<br>渦輪機→發電機發電 | 鈾-<br>235 | 原料仰賴進口                             |
| 風力發電 | 利用風吹動風車→螺旋槳轉動→<br>發電機發電                       | 風         | 有區域限制,不穩定                          |
| 水力發電 | 利用高處水流放到低處,重力位<br>能轉換成動能→推動渦輪機→發<br>電機發電      | 河川的水      | 臺灣河川短小湍急,開<br>發受限,主要支援尖峰<br>時段用電調度 |

※臺灣發電的使用率:火力>核能>水力>風力

- 9、電的輸送:電力公司利用高電壓、低電流運送以減低電能耗損→變電所降壓→變電箱 降至 110V 或 220V。
- 10、**電費計算**:電力公司在用戶端裝設瓦時計(電錶),以計算每戶用電量並以「**度**」計價。度是電能計算單位。

1度=1000 瓦× 1小時的電能=  $3.6 \times 10^6$  J。

- 11、短路: 指電器與導線並聯,此時會有大電流經導線流過,而不經過電器。
- 12、**保險絲**:低熔點金屬合金線。當通過的電流超過某一限度,保險絲會先熔斷,使電路 形成斷路。

**無熔絲開關**:當開關成通路,若電流大到某一限定值時,就會自動跳開形成斷路。

# 主題二十二 電池、電解與電鍍

# 1、常見的電池

| 辞 銅 電 池        | 上極<br>負極<br>鹽橋  | 銅片<br>(硫酸銅溶液)<br>鋅片<br>(硫酸鋅溶液)<br>硝酸鉀溶液          | <ul> <li>正極活性小得到電子,負極活性大放出電子,以易解離的強電解質水溶液為鹽橋來溝通電路。<br/>負極:Zn→Zn²+2e² 兩極總質量減少正極:Cu²+2e² → Cu(析出)</li> <li>鹽橋中,硝酸根往負極、鉀離子往正極移動。</li> <li>硫酸銅溶液中,因銅離子變少,溶液顏色變淡。</li> </ul>                                                                     |
|----------------|-----------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>鋅 猛</b> 電 池 | 正極<br>負極<br>電解液 | 二氧化錳<br>(碳棒導出電流)<br>鋅殼<br>糊狀氯化銨                  | <ul><li> 鋅錳電池即為碳鋅電池。</li><li> 鋅錳電池放電初期電壓約為 1.5V,使用後電壓會逐漸降低,不可充電。</li></ul>                                                                                                                                                                  |
| 鹼性電池           | 正極<br>負極<br>電解液 | 二氧化錳<br>(金屬外殼導出)<br>鋅粉(鍍鎳合金棒<br>導入電流)<br>氫氧化鉀水溶液 | <ul> <li>與鋅錳電池相比可在較大電流時仍可維持電壓,低溫下亦可使用(-20~54℃)。</li> <li>為一次電池,不可充電。</li> </ul>                                                                                                                                                             |
| 鉛蓄電池           | 正極<br>負極<br>電解液 | 二氧化鉛<br>鉛<br>稀硫酸溶液                               | <ul> <li>又名鉛電池,俗稱電瓶,三槽組成一6V的電池(每槽提供2V)。</li> <li>放電時,正負極質量均增加,且變成白色的硫酸鉛,硫酸溶液的濃度與密度變小。</li> <li>PbO<sub>2</sub>+2H<sub>2</sub>SO<sub>4</sub>+Pb ★ 2PbSO<sub>4</sub>+2H<sub>2</sub>O 充電</li> <li>充電時負極接充電器的負極,正極接充電器的正極,硫酸濃度和密度變大。</li> </ul> |
| 鋰離子電池          | 正極<br>負極<br>電解液 | 鋰金屬氧化物<br>碳<br>含鋰離子電解液                           | <ul><li>重量輕且可達較大的電池電壓約 3.6V,供電時間長且可充電再利用,較無記憶效應。</li><li>廣泛用於手機、數位相機。</li></ul>                                                                                                                                                             |

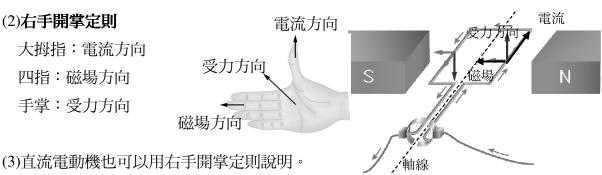
#### 2、電解與電鍍

| 電解硫酸       | 碳棒電極   | 正極:電解水產生 $O_2 \cdot H^* \cdot $ 放出 $e^-$ 負極: $Cu^{2+}+2e^- \longrightarrow Cu($ 紅色的銅析出附著在碳棒上)電解過程中,溶液的銅雕子減少,顏色變淡, $pH$ 值變小。 |  |  |
|------------|--------|-----------------------------------------------------------------------------------------------------------------------------|--|--|
| 銅溶液        | 銅棒電極   | 正極: Cu→Cu <sup>2+</sup> +2e <sup>-</sup> (質量減少)<br>負極: Cu <sup>2+</sup> +2e <sup>-</sup> →→Cu(質量增加)<br>電解過程中,溶液濃度不變。        |  |  |
| <b>電解水</b> |        | 正極生氧氣(助燃性),負極生氫氣(燃燒有爆鳴聲),體積 比 $H_2:O_2=2:1$                                                                                 |  |  |
|            | 正極:欲鍍物 | 銅片鍍鋅:電解液為硫酸鋅。                                                                                                               |  |  |
| 電鍍         | 負極:被鍍物 | 正極:Zn──→Zn <sup>2+</sup> +2e (質量減少)<br>負極:Zn <sup>2+</sup> +2e ──→ Zn(質量增加)                                                 |  |  |

#### 主題二十三 電與磁

#### 1、磁鐵

- (1)磁鐵存在 N 極(指北)和 S 極(指南),同名極相斥,異名極相吸,此引力或斥力為磁力。
- (2)N極和S極必成對出現(正電荷和負電荷可單獨出現)。
- (3)**軟磁鐵(暫時磁鐵**):物質易被磁化,磁化後只能暫時保留磁性,如鐵釘。 **硬磁鐵(永久磁鐵**):物質難被磁化,但磁化後能長期保留磁性,如鋼釘。
- 2、磁性物質:可以被磁鐵吸引的物質,包括鐵、鈷、鎳,或含鐵、鈷、鎳的合金。
- 3、磁力線
  - (1)磁力線為假想線,表示磁針在磁場中的受力情形,愈密磁場愈強。
  - (2)磁力線為封閉平滑曲線,任兩條磁力線皆不相交。
  - (3)磁力線上任一點的切線方向即為該點的磁場方向,亦即磁針置於該點時,N極所指的方向。
  - (4)磁力線的方向:磁鐵外 N→S,磁鐵內 S→N。
- **4、地磁**:地球表面存在由南向北的磁場。靠近北極端為地磁北極,靠近南極端為地磁南極,但與地球自轉軸夾 11°。
- 5、電流的磁效應:載流導線可以在其周圍建立磁場。


| 載流導線   | (1) <b>安培定律</b> :載流導線建立的磁場強弱<br>與電流大小成正比、與導線距離成反<br>比。<br>(2) <b>安培右手定則</b> :右手大拇指:電流方<br>向;另外四指彎曲:磁場方向。 |
|--------|----------------------------------------------------------------------------------------------------------|
| 載流單匝線圈 | 將導線彎成單匝線圈後,通以相同大小<br>的電流,則載流單匝線圈中間部分的磁<br>力線會較載流直導線的磁力線密集,故<br>磁場強度也較大。                                  |
| 載流螺線管  | (1)可視為多個單匝圓形線圈串連而成。<br>(2)判斷磁場方向:右手四指彎曲為電流<br>方向,大拇指為磁場方向。                                               |
| 電磁鐵    | (1)鐵釘放入螺線管內部,通入電流時,總磁場將增強。以這種方法得到磁場的裝置,稱為電磁鐵。<br>(2)電流愈大,磁場愈強;圈數愈多,磁場愈強。<br>(3)判斷磁場方向與載流螺線管同。            |

#### 6、馬達:電能→動能

|    | 馬達(電動機)                                                                                      |  |
|----|----------------------------------------------------------------------------------------------|--|
| 構造 | <ul><li>電磁鐵:纏繞漆包線,可自由轉動的轉軸。</li><li>場磁鐵:永久磁鐵</li><li>集電環:2個半圓形金屬環,與電刷微微接觸。</li></ul>         |  |
| 原理 | <ul><li>線圈通電,形成電磁鐵,兩端磁性與場磁鐵相斥而轉動。</li><li>線圈軸轉半圈,電流方向反向,兩極磁性轉變,又與場磁鐵相斥,因此轉軸可不斷的轉動。</li></ul> |  |

#### 7、電流與磁場的交互作用:

(1)導線中電流方向與磁場垂直時,導線會受力偏向,此時受力最大,若互相平行則不 受力,移動的電荷在磁場中也會受力偏向。



#### 8、電磁感應

- (1)法拉第提出:因磁場變化而產生電流的現象稱電磁感應;產生的電流為感應電流。
- (2)磁場變化的速率愈大,感應電流愈大,且成正比關係,此為法拉第定律。
- (3)當線圈內的磁場變化時,線圈會感應而生成電流,感應電流的方向恆使此電流產生 一新磁場,以抗拒原來磁場的變化。
- 9、發電機:利用電磁感應,使線圈在磁場中轉動以產生電,動能→電能。

| 構造 | <ul><li>場磁鐵:永久磁鐵</li><li>電樞:能轉動的線圈</li><li>集電環:發直流電為兩半圓形金屬環,交流電為圓形金屬環</li><li>電刷:與導線連接將電流輸出</li></ul> | 場磁鐵NS |
|----|-------------------------------------------------------------------------------------------------------|-------|
| 原理 | <ul><li>轉動電樞,使線圈因磁場變化產生感應電流</li><li>電流流經集電環,再由電刷導出</li><li>電樞轉動愈快或電樞圈數愈多,感應電流愈大</li></ul>             | 電刷    |