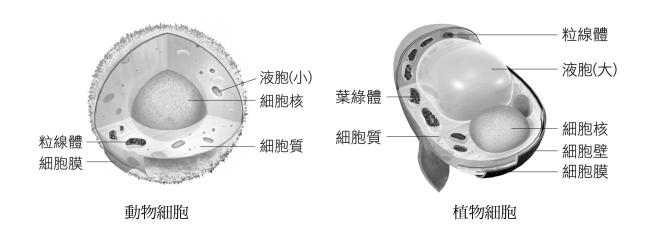
_ CONTI	ENTS


主題一	細胞和生物	2
主題二	顯微鏡的構造和使用	4
主題三	植物的器官及其功能	6
主題四	消 化	9
主題五	循 環	11
主題六	協調與恆定	13
主題七	生物體的傳承	16
主題八	演化與分類	18
主題力,	生物万界與生態	20

生物基測重點掃描

主題一 細胞和生物

一、細胞的構造

項目	說明		
細胞膜	 (1)可以控制細胞內外物質的進出,可讓小分子的物質自由進出,而大分子的物質不能自由通過。其中水和氣體可以自由進出細胞膜,但是大分子的蛋白質、澱粉、脂肪等不能通過細胞膜。 (2)葡萄糖是藉由細胞膜上的特殊蛋白質運送進入細胞。 (3)植物細胞在細胞膜的外面有一層細胞壁,細胞壁是由纖維素組成,植物細胞的細胞壁不能控制物質的進出。 		
細胞核	 (1)大部分的細胞都有一個細胞核,有些則有多個核,而「人體成熟的紅血球細胞沒有細胞核」,因此可以運送更多氧氣。 (2)人體成熟紅血球因為沒有細胞核,所以也沒有染色體及 DNA。但是細菌和藍菌雖然沒有細胞核,但卻有遺傳物質,且它們的遺傳物質位於細胞質內。 (3)我們用顯微鏡觀察細胞時,可以用「亞甲藍液」將細胞核染成「深藍色」,讓細胞核在顯微鏡下可以觀察得更清楚。亞甲藍液也可以用「碘液」代替。 		
細胞質	(1)葉綠體位於綠色植物體的細胞質中,可進行光合作用,製造葡萄糖。不是所有植物體內的細胞都含有葉綠體,例如:根部細胞和植物的表皮細胞沒有葉綠體。(2)粒線體是細胞進行呼吸作用,產生能量的中樞。也可以說:「粒線體是細胞的能量供應中心」。(3)液胞有暫時儲存物質、維持細胞形狀的功能。		

二、生物體的組成層次

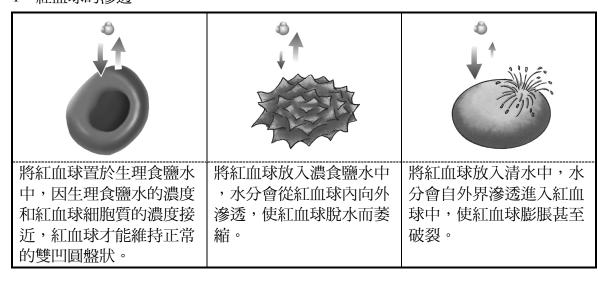
動物	細胞→組織→器官→器官系統→生物體依序組成
植物	細胞→組織→器官→生物體依序組成,植物體缺乏系統的層次

三、細胞的形狀和功能

項目	神經細胞	肌肉細胞	表皮細胞	結締組織細胞
形狀	突起	細長或紡錘狀	扁平	不規則
功能	傳遞訊息	收縮運動	保護	連結、聯繫

四、生物圈的範圍

1、限制生物生存的主要因素:

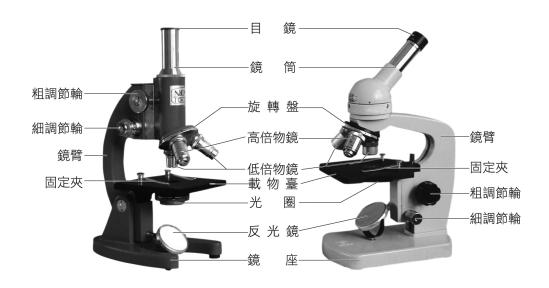

高空中→空氣稀薄;深海中→壓力

2、生物圈的範圍包括海平面以上和以下各約一萬公尺的部分。如果將地球比作一個 蘋果,生物圈的範圍就像蘋果的外皮而已。

五、生物適應環境的特色:生物通常都有特殊的構造和功能,以適應周圍的環境。

生物	特殊構造
仙人掌	針狀葉:可減少水分蒸散。肥厚的莖:可貯藏水分以適應長期缺水的環境。
捕蟲植物	具有特殊的構造和功能。例如:毛氈苔和豬籠草藉著捕食昆蟲以獲 得含氮的營養成分,所以能生長於潮濕且土壤貧瘠缺氮的地區。
水筆仔 (胎生植物)	生長在沿海各大河流與海洋交會的沼澤軟泥中,此環境中土壤缺氧 且鹽度高,既不適合種子發芽也不利幼苗的生長。其種子像胎生動 物一樣留在母樹上吸取養分,成長為筆狀的「胎生苗」。

- **六、擴散作用**:分子由濃度較高的地方往濃度較低的地方運動之現象,稱為擴散作用 1、水分和氣體分子可經由擴散作用自由通過細胞膜,進出細胞。
 - 2、擴散作用不需外力即可進行,若有外界助力,如攪拌、風等可加速分子的擴散。
- 七、渗透作用:水分藉擴散作用通過細胞膜的現象,稱為滲透作用,例如:
 - 1、紅血球的滲透:


2、植物細胞的滲透作用

八、科學方法的步驟

- 1、要對事物作周詳的觀察。
- 2、提出問題,然後針對問題擬定答案。這種答案是對問題的可能解釋,稱為假說。
- 3、假說是否正確,要用實驗加以求證。

主題二 顯微鏡的構造和使用

一、複式顯微鏡構造和功能比較表

構造名稱	功能與特色			
目鏡	目鏡愈長	目鏡愈長,放大倍率愈少,因此目鏡長短和放大倍率成反比。		
物鏡	物鏡愈長	物鏡愈長,放大倍率愈高,因此物鏡長短和放大倍率成正比。		
旋轉盤	用來更換不同倍數的物鏡。			
光圈	控制進入視野中光線的量,具有調整光線之功能。			
反光鏡	平面鏡 低倍用。			
以儿 貌	凹面鏡 高倍或視野太暗時,可用凹面鏡增加亮度。			
粗調節輪	調整影像的清晰度,通常用於找到標本。			
細調節輪	調整影像	的清晰度,使影像更清楚。		

- 1、用光圈和反光鏡調整視野的亮度,觀察時不宜太暗或太亮。觀察時宜兩眼同時睜開,以避免眼睛疲勞。
- 2、更換高倍鏡觀察的步驟:
 - a、必須先將想放大的部位移到視野中央。
 - b、轉動旋轉盤換高倍鏡。
 - c、調整細調節輪直到看到最清楚。注意:使用高倍鏡不可轉動粗調節輪。
- 3、觀察時若發現視野一半亮一半暗,此時要調整反光鏡。
- 4、複式顯微鏡所呈現的影像與原像上下、左右顛倒。
- 5、低倍鏡下找不到標本時,不可換高倍鏡來找。

二、解剖顯微鏡的構造和功能

構造名稱	功能
目鏡和物鏡	將標本放大以便觀察。
粗、細調節輪	調整影像的清晰度,使標本更清楚。
眼焦調整器	調整兩眼的焦距,使兩眼都觀察得更清楚。
眼距調整器	調整兩眼的距離,使影像具有立體感。

三、細胞觀察

- 1、陸生植物葉片的下表皮包含了「表皮細胞」和「保衛細胞」,因此葉的下表皮在 組成層次上屬於組織。
- 2、細胞形態比較

細胞	形態	
人體口腔皮膜細胞	形狀不規則,沒有細胞壁,也沒有葉綠體。	
植物的表皮細胞	呈不規則狀,有細胞壁無葉綠體。	
保衛細胞	兩兩成對,呈半月形,有細胞壁和葉綠體。	

主題三 植物的器官及其功能

一、植物的根

- 植物的根分為鬚根系與軸根系兩種。有些植物根部的表皮細胞向外突出,形成根毛,可以增加吸收的表面積。
- 2、鬚根系和軸根系植物的比較

項目	軸根系	鬚根系
外形特徵	由主根和支根組成	都是鬚根沒有主根
根的特性	深入土壤中	分布範圍廣、根淺
例子	木本植物、大部分雙子葉植物	大部分單子葉植物、部分雙子葉 的草本植物

二、植物的莖

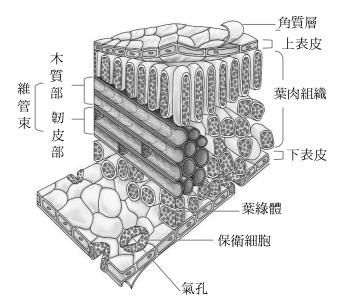
1、木本植物與草本植物莖的區別

植物	逐年加粗	質地	樹幹	例子
木本	可以	較堅硬	明顯	臺灣欒樹、榕樹等
草本	不能	較柔軟	不明顯	南美蟛蜞菊、鳯仙花、草莓等

- 2、植物莖內的維管束構造:
 - (1)大多數的植物體內都有維管束。(蘚苔類沒有維管束)
 - (2)維管束包括韌皮部和木質部,由根、莖延伸到葉,不含葉綠體。

項目	位置	負責運輸的物質	運送方向
韌皮部	外圈	光合作用製造的養分(葡萄糖)	由下向上,也可由上向下 運送
木質部	內圈	負責運輸水分和溶於水中的礦物質	只能由下向上運送

- 3、有些植物的維管束內有形成層,可不斷分裂,向外產生新的韌皮部,向內形成新的木質部。
- 4、單子葉植物和雙子葉植物維管束的比較

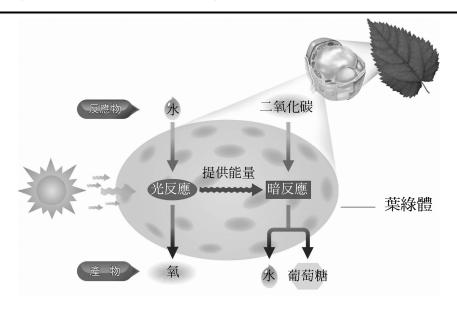

種類	維管束排列	形成層	舉例
單子葉	散生	沒有形成層	椰子、蘭花、玉米
雙子葉	環狀排列	有形成區	(1)一年生的雙子葉植物:苜宿、大理花、 咸豐草 (2)多年生雙子葉植物(莖能逐年增高加粗) :榕樹、朱槿

5、年輪的形成(年輪是木質部所構成): 木質部細胞在不同季節,生長速度不同, 造成横切面上顏色深淺差異的現象。

季節	氣候	細胞生長	細胞形態
春夏	氣候溫暖、雨量豐沛	生長快速	細胞大而顏色淺
秋冬	氣溫下降、雨量減少	細胞生長慢甚至停止	細胞小而顏色深

三、植物葉片的構造

- 1、陸生植物的表皮細胞外面有角質 層,可防止水分的散失。
- 2、陸生植物在葉的下表皮細胞之間 散布著半月形的保衛細胞。
- 3、保衛細胞:具有葉綠體可行光合 作用,主要控制氣孔開合。
 - (1)水分多時膨脹,氣孔打開。
 - (2)水分少時縮小,氣孔關閉。
- 4、葉脈:輸導組織(維管束)所組成 ,能運送水分和養分。
 - (1)單子葉植物:平行脈。 (2)雙子葉植物:網狀脈。
- 5、蒸散作用與泌液作用



蒸散 作用

水分由氣孔散失的現象。植物根部吸收的水,大部分變成水蒸氣由氣孔散失。 蒸散作用可以調節植物的體溫,有助於植物吸收水分,而且是植物體內水分上 升的動力之一。

泌液 當植物根部吸水快速、空氣濕度過高、氣孔關閉,蒸散無法進行時,植物體內 **作用**|的水會從葉的邊緣或尖端泌出,以維持體內水分的恆定。

四、光合作用

1、光合作用在植物的葉綠體內進行,依反應順序的先後,可分成光反應和暗反應。

光反應	利用葉綠素吸收來的太陽能將水分解產生氧氣和能量。產生的氧氣是從水
一儿汉源	分解而來,並且從氣孔釋放到大氣中。
	(1)由光反應提供能量,協助二氧化碳轉變成葡萄糖和水。不需日光直接參
暗反應	加反應,但需要酵素的幫助。
	(2)暗反應會隨著光反應一起進行,而不是在黑暗時才進行。

- 光合作用主要的目的是製造葡萄糖,而不是製造氧氣。葡萄糖除了供應植物本身 生長利用外,也可轉變成澱粉儲存或進一步合成蛋白質和脂質等生長所需物質。
- 3、光合作用是將太陽能轉換成化學能的過程,化學能是儲存在食物中的能量。
- 4、光合作用的「實驗步驟」與「目的」比較表

項目	實驗步驟	目的
1	將鋁箔紙包住葉片。	隔絕日光,以便進行實驗觀察。
2	將葉片放入沸水中煮沸 2 分鐘。	軟化葉片,破壞細胞壁。
3	將葉片放入酒精中,隔水加熱。	溶解葉片中的葉綠素,使葉片褪色,以免影響觀察。
4	將葉片置入沸水中漂洗。	洗去酒精及殘餘的葉綠素。
5	漂洗過後的葉片,滴加碘液。	檢驗是否有澱粉反應,若有澱粉會 呈現藍黑色。

五、植物的感應

1、向性:

- (1)植物能接受環境中光線、水分和地球引力等刺激而有所感應。植物的感應常常與生長激素有關,所以植物的感應通常比動物緩慢。
- (2)生長激素和植物生長關係的判斷:
 - a、生長激素可促進莖的生長速度,但會抑制根的生長。
 - b、植物的生長會朝向生長慢的一側彎曲。
- (3)莖的向性

莖的向光性	植物的莖照光時,向光的一側生長激素較少,生長慢;背光的一側生長激素多,生長快,因此植物的莖向生長慢的方向彎曲,造成了向光性。
莖的背地性	植物横放時,因為地球引力的影響,使得生長激素分布在莖的下層,上側生長激素少而生長慢,下側生長激素多而生長快,因此莖會向上彎曲。

(4)根有向濕性和向地性。

2、膨壓運動:細胞內發生膨壓變化所致,是植物產生的局部感應。

	說明	舉例
睡眠運動	受晝夜明暗或溫度高低刺激後所產生的反應	酢漿草及含羞草
觸發運動	含羞草等植物被碰觸後,快速閉合葉片。	含羞草
捕蟲運動	捕蟲植物利用變態的葉,進行捕蟲運動。	毛氈苔、捕蠅草
氣孔開合	植物行光合作用時,水分進入保衛細胞,細胞膨脹,氣孔打開。	

3、植物開花素的產生和光週期有關,利用人工方法控制每日光照和黑暗的時間,可以控制植物的開花。例如:<u>彰化縣田尾鄉</u>的花農,常在大型花圃上方架設夜間照明設備,以調節各花種的開花期。

六、植物的受精與發育

1、植物的花是生殖器官,一朵典型的花具有雄蕊、雌蕊、花瓣和萼片四個部分,花 的下面有膨大的花托托住。

雄蕊	頂端的花藥內有花粉粒,花粉粒內含有 精細胞
雌蕊	基部膨大為子房,子房內有胚珠,胚珠 內有卵細胞
受精	(1)雄蕊的花粉粒經風、水、昆蟲或鳥的 幫忙傳到雌蕊的柱頭上,花粉粒會萌 發產生一條花粉管,將精細胞送入胚 珠中和卵受精。 (2)卵受精後,胚珠會發育為種子,子房 發育為果實。種子經播種後,經萌芽 長成新個體,完成植物的有性生殖。

花藥

花粉管

卵細胞

柱頭 -

雌

蕊

胚珠

2、種子植物的受精過程不需要水即可完成。

3、兩性花與單性花:

3、枫狂化與	単性化・	精細胞	
項目	定義	舉例	
兩性花	同一朵花上具有雄蕊和雌蕊	百合、朱槿	
單性花	一朵花上僅具雄蕊稱雄花 一朵花上僅具雌蕊稱雌花	絲瓜、木瓜	

4、單子葉植物與雙子葉植物:

項目	子葉數	葉脈	花瓣數	舉例
單子葉植物	一片子葉	平行脈	通常為三或三的倍數	百合、水稻
雙子葉植物	兩片子葉	網狀脈	通常為四或五的倍數	杜鵑、朱槿

主題四消化

- 一、酵素:又稱酶
 - 1、不同的酵素,功能也不同,有些酵素可分解物質,有些則可合成物質。
 - 2、影響酵素活性的主要因素有溫度和酸鹼度。
 - 3、每種酵素都有其最適宜的溫度範圍。溫度太低時,酵素作用會停止,但不會被破 壞,因此在回溫後又可以恢復活性;溫度太高時,酵素則會降低,甚至永久失去 活性。
 - 4、人體內各種酵素最適酸鹼值:
 - (1)唾液澱粉酶→中性
 - (2)胃蛋白酶→酸性
 - (3)小腸中各種消化酵素→鹼性
 - 5、酵素專一性:一種酵素只能與特定的受質作用。

基測重點掃描生物 9

二、消化系統:人體的消化系統包括消化管和消化腺兩部分。

	消化管	消化腺	消化液	說明
口腔	口腔可以磨碎與攪拌 食物。	唾腺	唾液	內含澱粉酶,可將澱粉初步分解 成麥芽糖。
咽、 食道	(1)不具有消化功能。 (2)食道利用收縮推擠的	方式推動	力食團。	
胃	胃壁肌肉產生劇烈蠕 動,使食物與胃液混 合,消化成食糜。	胃腺	胃液	胃液中含有鹽酸和酵素,鹽酸可 殺菌並促進胃液中的酵素初步分 解蛋白質。
	(1)小腸內壁有絨毛,	腸腺	腸液	分解醣類、蛋白質。
小腸	絨毛內有微血管和 淋巴管,可增加吸 收養分和水分的面 積。 (2)食物在小腸內才會 分解成最小分子。	肝臟	膽汁	(1)膽汁不含酵素,儲 存於膽囊中。 (2)膽汁不具分解能力 ,但是膽汁可乳化 脂質,提高脂肪被 分解的效率。
	(3)小腸為吸收養分和 水分的主要場所。	胰臟	胰液	分解蛋白質、醣類、 脂質
大腸、	腸道細胞混合成糞便	分水分, ,由肛門 ,盲腸下	剩餘的	的殘渣會和消化管的細菌及剝落的

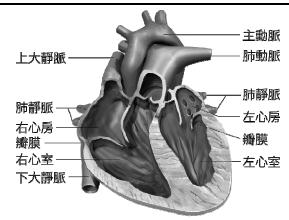
三、食物中養分的測定

- 1、測定澱粉用碘液,碘液滴入澱粉液中則呈藍黑色。
- 2、本氏液可測定葡萄糖,葡萄糖液加入本氏液,兩者混合後呈藍色,經隔水加熱後,顏色變化依順序為:綠→黃→橙→紅。
- 3、用本氏液測定葡萄糖時,溶液顏色變化依序為:藍色→綠色→黃色→橙色→紅色,愈偏紅色,表示所含葡萄糖愈多。

主題五 循環

一、循環系統

1、開放式循環與閉鎖式循環的差異


循環系統	開放式循環系統	閉鎖式循環系統
示意圖	動脈。組織靜脈	動脈 心臟 靜脈 組織
血流途徑	心臟→動脈→體腔→靜脈 →心臟	心臟→動脈→微血管→靜脈→心臟
特點	沒有微血管網,血液直接流入 體腔中交換物質。	動脈與靜脈之間有微血管網相連, 物質交換在微血管進行,血液不會 流入體腔。
例子	蜘蛛、蝦、蝗蟲等	蚯蚓、青蛙、魚類、人類等
循環效率	較差	較好
交換物質	細胞和血液直接接觸	細胞和微血管之間

2、血液循環與淋巴循環

血液循環系統	心臟、血管和血液		
淋巴循環系統	淋巴結、淋巴管、淋巴液、淋巴球		

3、心臟腔室與連接血管的關係

心臓腔室	連接血管
左心房	肺靜脈
左心室	主(大)動脈
右心房	上下大靜脈
右心室	肺動脈

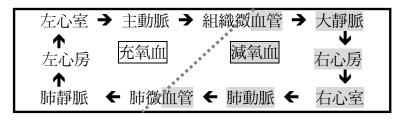
- 4、心房和心室之間有瓣膜,可以防止血液倒流,避免流入心室的血液逆流回心房。
- 5、脈搏:心臟收縮時,血液流入動脈,導致動脈管的搏動。

血壓:血液對動脈管產生的壓力。

- 6、醫生幫病人把脈就是測量動脈管的搏動情況,而平時測量血壓就是測量動脈管的 壓力。而人體抽血、捐血則是從靜脈管抽出。
- 7、心音是由於心臟收縮和舒張時,心臟內不同的瓣膜關閉而發出不同的聲音。

8、各種血管的比較

血管	動脈	靜脈	微血管
管壁	最厚	次之	最薄(一層細胞)
血流速度	最快	次之	最慢
路徑	出心臟	回心臟	介於二者之間
彈性	大	中	小
血壓	大	小	中


9、微血管的管壁只有一層細胞的厚度所以管壁較薄,因此有助於血液和組織細胞間的物質交換。

物質	肺	組織細胞
氧氣	肺泡→肺微血管	組織微血管→組織細胞
二氧化碳	肺微血管→肺泡	組織細胞→組織微血管

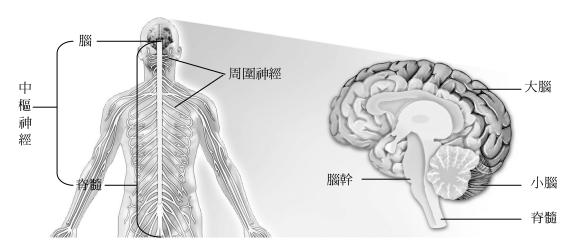
10、三種血球比較表

名稱	紅血球	白血球	血小板
形狀	雙凹圓盤狀	不規則	碎片狀
細胞核	無	有	無
數目	最多	最少	次之
大小	次之	最大	最小
功能	含有血紅素可運送氧氣	(1)吞食病原體 (2)防禦疾病	血管破裂時,促進血 液凝固

11、人體的血液循環

二、淋巴循環系統

組織液	血液中部分血漿會從微血管滲到組織細胞間。
淋巴液	組織液流進淋巴管後,稱為淋巴液,淋巴液在淋巴管內流動,最後注入靜脈,重新回歸血液循環中。
淋巴管	運送淋巴液的通道
淋巴結	淋巴管膨大的部位,內有許多淋巴球。淋巴結具有過濾淋巴液的功能。


三、觀察魚的尾鰭

- 1、我們觀察魚的尾鰭是因為尾鰭較薄,透光性良好,血球移動速度也較慢。
- 2、魚的尾鰭血管內流動的小顆粒是血球。
- 3、觀察魚的尾鰭實驗中,只能以血流方向判斷動脈、靜脈或微血管,不能以血液流速、血管厚度或血管彈性判斷。
- 4、實驗時先找到微血管,流入微血管的是動脈,流出微血管的是靜脈。

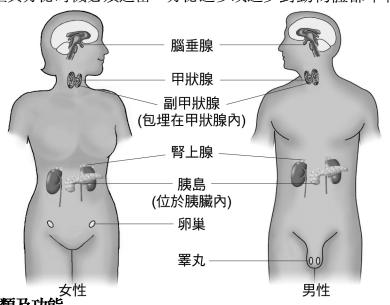
主題六 協調與恆定

一、人體的神經系統

二、中樞神經組成

大腦	(1)分成左、右兩半球,左腦控制右半身的活動,右腦控制左半身的活動。 (2)大腦半球分為許多區域,分別主管運動、感覺、語言、記憶和思考等。 (3)大腦又稱為意識中樞。
	(ジノスル国人、十行かり心が時代十二世
小腦	位於大腦後下方,負責協調全身肌肉的活動,以維持身體的平衡。
腦幹	(1)控制心搏、呼吸、調節體溫,並有控制吞嚥、咳嗽、噴嚏、眨眼、嘔吐 及唾腺分泌等各種反射作用。若腦幹受損,個體極易死亡。 (2)在醫學上判定的「腦死」,就是指腦幹的功能喪失,而失去生命現象。
脊髓	(1)位於身體背側中央,與腦幹相連。 (2)訊息傳遞的橋樑。 (3)掌管四肢反射。

三、周圍神經系統


項目	万日 		
發出位置	腦	脊髓	
分布	頭、肩、內臟	軀幹、四肢、內臟	
數目	12 對	31 對	

四、人體的神經傳導途徑

項	目	中樞神經	-	
意謂	战作用		(1)手摸熱鍋感到燙: 受器→感覺神經元→脊髓→大腦(2)踩到圖釘立刻收回,並用手去撫摸: 受器→感覺神經元 →脊髓→大腦→脊髓→運動神經元→動器	
反射動	四肢反射	脊髓	膝反射:受器→感覺神經元→脊髓→運動神經元→動器	
~	頭部反射	腦幹	瞳孔遇強光而縮小: 受器→感覺神經元→腦幹→運動神經 元→動器	

五、內分泌系統

- 1、內分泌腺產生的激素釋放到血液中,隨著血液運送至作用部位的細胞。
- 2、一般而言,少量的激素便足以調節個體的生理活動。
- 3、激素的分泌量與分泌時機必須適當,分泌過多或過少對動物體都不利。

六、人體內分泌的種類及功能

腺體	說明
腦垂腺	(1)幼年時期分泌過多,造成巨人症。分泌過少,則會造成侏儒症。 (2)腦垂腺可以影響其他內分泌腺的活動,所以腦垂腺是內分泌系統的總指揮。
甲狀腺	(1)甲狀腺素有促進細胞代謝的作用,分泌過多時,代謝旺盛,組織活動增多,心跳加快,體重減輕,眼球突出等症狀,稱甲狀腺機能亢進。(2)甲狀腺素兒童期分泌不足,生長和智力的發展會較為遲滯,會造成呆小症。(3)飲食中缺乏碘,會造成合成甲狀腺素的原料不足,引起甲狀腺腫大。
副甲狀腺	(1)副甲狀腺分泌過少時,行動會變遲緩,體重增加。 (2)副甲狀腺素可調節體內鈣、磷的濃度,分泌不足會造成血液中鈣的含量 太低,而產生肌肉抽搐的現象,嚴重時甚至會導致死亡。
腎上腺	(1)當動物在發怒或恐懼時,腎上腺素的分泌量會大增,使儲藏在肝臟中的 肝糖轉變為葡萄糖而釋放到血液中,以增加血液中的糖分。(2)腎上腺素同時也可促使心搏加快,腸胃運動減慢,並使肌肉的血管擴張 ,增加血液量,以做有力而持久的收縮。
胰島	(1)人體飢餓時,因血糖下降,此時升糖素的分泌會增加,促進肝糖轉變為葡萄糖,釋放到血液中,使血糖的濃度上升。(2)胰島素能促使血液中的糖進入細胞中,促進動物細胞對葡萄糖的利用,或形成肝糖儲存起來,以降低血糖的濃度。(3)當胰島素分泌不足時,細胞不能利用或儲藏糖分,血液中的葡萄糖量增加,血液中多餘的糖可能會隨尿液排出,造成糖尿病。

七、恆定性

1、體溫恆定

- (1)鳥類和哺乳類的腦幹有體溫調節中樞,且體表具有良好的保溫構造,所以體 溫能維持在一定的範圍。
- (2)人體的體溫恆定調節

項目	微血管	血流量	食慾	活動
天熱	擴張	增加	減退	活動遲緩
天冷	收縮	減少	增加	顫抖

2、水的恆定

- (1)植物的葉片上有角質層、莖外表上有樹皮,動物的體表有皮膚或鱗片等,可以防止水分散失。
- (2)人體的水分,主要經由排尿而流失。當人體內缺水時,血液的濃度升高,會刺激腦幹,產生口渴的感覺。

3、血糖恆定

- (1)人體血糖濃度上升時,胰島素的分泌便增加,使血糖的濃度下降。
- (2)低血糖的血液流經腦幹後,產生飢餓感,會促使升糖素和腎上腺素分泌。

激素	分泌部位	功能	
胰島素	胰島	幫助降低血糖、合成肝糖	
升糖素	胰島	幫助分解肝糖、升高血糖	
腎上腺素	腎上腺	幫助分解肝糖、升高血糖	

4、呼吸恆定

(1)呼吸作用:細胞利用氧氣,將養分(如葡萄糖)分解,以釋放能量。

- (2)呼吸運動的控制中樞在腦幹,腦幹能接收血液中二氧化碳濃度的訊息,以改變呼吸速率。劇烈運動時,血液中的二氧化碳增加,便會刺激腦幹,促使呼吸加快,藉以排除過多的二氧化碳。
- (3)呼吸運動時胸腔的變化情形如下:

運動	肋骨	横膈膜	肋間肌	胸腔與壓力
吸氣	上舉	收縮下降	收縮	胸腔擴大、壓力變小
呼氣	下降	舒張上升	舒張	胸腔縮小、壓力變大

5、氮廢物的排除

- (1)單細胞生物以及簡單的水中生物,把氨排除到水中。
- (2)昆蟲、鳥類等將氨轉變為不易溶於水的尿酸,混合在糞便裡排除。
- (3)人類由肝臟把氨變為尿素,由血液運送到腎臟。
- (4)人體的泌尿系統:

. // 4133	20.4 (-0.4.4.) (-0.4.4.)
腎臟	將血液中有用的物質再吸收,尿素、多餘水分、鹽類等物質形成尿液。
輸尿管	尿液經由輸尿管滴入膀胱儲存。
膀胱	暫時儲存尿液。
尿道	尿液排出的管道。

主題七 生物體的傳承

一、生物的生殖

1、減數分裂和細胞分裂

項目	目的	分裂 次數	分裂順序	子細 胞數	分裂過程中 染色體數目變化
	(1)產生新個體 (2)產生體細胞	1 次	複製染色體分離	2個	2N → 4N → 2N
細胞 分裂	① 每一條 體均被 但未分	製,	② 複製的染色體排列於 細胞的中央位置,並 逐漸向兩側分離。		複製的染色體完成分離 ;並且細胞一分為二, 形成兩個子細胞。
	產生配子 (精子或卵)	2 次	1.同源染色體分離 2.複製的染色體分離	4個	2N → 4N → 2N → N
減數分裂	① 染色體 後製 ,並且配對。	②第一次同體 料分量 生 生 生 生 生 生 生 生 生 生 生 生 生 生 生 生 生 生 生	源 互, , 兩	4) 完成分裂版 网络杂杂	19,各具有

2、無性生殖與有性生殖

生殖種類	定義	分裂方式	遺傳性狀
無性生殖	單一個體不需經過受精作用,即可產 生新個體。	細胞分裂	子代與親代完全 相同。
有性生殖	雄性個體⇔精子。 雌性個體⇔卵。 精、卵經受精作用產生受精卵,發育 成新個體。	減數分裂 和 細胞分裂	子代與親代不完 全相同。

3、無性生殖

生殖方式	舉例
分裂生殖	細菌、草履蟲、變形蟲
出芽生殖	水螅、酵母菌
斷裂生殖	渦蟲、黑海參、顫藻、海葵
孢子繁殖	蕨類、蘚苔類、蕈類、黴菌
營養器官繁殖	甘藷、馬鈴薯、草莓、落地生根、扦插繁殖
組織培養	蘭花、康乃馨、人蔘

4、體外受精與體內受精的差異

方式	位置	卵數量	受精機率	交配行為	生活環境
體外受精	水中	多	低	無	大多水生
體內受精	母體內	少	高	有	大多陸生

5、卵生、卵胎生和胎生的比較

種類	受精 方式	發育場所	卵的 大小	養分來源	例子
eden at	體外	1.4 ddd (-)	,	卵本身	一般魚類、兩生類
卵生	體內	母體外	大	卵本身	多數爬蟲類、鳥類、針鼹、 鴨嘴獸、昆蟲
卵胎生	體內	母體內	次之	卵本身	大肚魚、孔雀魚、鯊魚、少 數蛇類(如:水蛇)
胎生	體內	母體內	小	母體	大部分哺乳類(如:人、鯨魚 、海豚、無尾熊)

6、人類的生殖:

- (1)卵在輸卵管上端完成受精作用。羊水可以保護胎兒,避免胎兒受到震盪。
- (2)胎兒藉臍帶與胎盤經由母體的血液獲得養分,而廢物是經由母體血液排除。
- 二、動物的生殖行為:動物行有性生殖時,由求偶到完成受精並產生後代的各種表現。
 - 1、雄蛙具有鳴囊可發出聲音,吸引同種雌蛙。
 - 2、雄孔雀開屏、雄鬥魚體色變鮮豔以吸引同種異性。
 - 3、雌蛾散發特殊氣味吸引同種雄蛾。

三、遺傳物質單位

項目	說明
基因	基因是指控制某一性狀的 DNA 片段。控制一種性狀的等位基因(遺傳
至 囚	因子)通常是成對的,分別位於一對同源染色體的相對位置上。
DNA	控制生物遺傳的基本物質是 DNA。
沙九石。周數	染色體是細胞核內最重要的構造,內含遺傳物質,可控制生物體的遺
染色體	傳特徵表現。染色體數目會隨著生物體的種類不同而有所不同。

四、基因計算與比率統計

親代基因	子代基因型	子代基因型比例	顯性:隱性
$AA \times AA$	全為AA	全部AA	1:0
AA×Aa	有AA、Aa兩種	$\frac{1}{2}$ AA \cdot $\frac{1}{2}$ Aa	1:0
AA×aa	全為Aa	全部Aa	1:0
Aa×Aa	AA 、 Aa 、 aa	$\frac{1}{4}$ AA $\frac{1}{2}$ Aa $\frac{1}{4}$ aa	3:1
Aa×aa	有Aa、aa兩種	$\frac{1}{2}$ Aa $\cdot \frac{1}{2}$ aa	1:1
aa×aa	全為aa	全部aa	0:1

五、人類血型和基因的表現方式

血型	A	В	AB	0
基因	I ^A I ^A 或 I ^A i	I ^B I ^B 或 I ^B i	$\mathrm{I}^{\mathrm{A}}\mathrm{I}^{\mathrm{B}}$	ii

六、人類性狀遺傳可分

分類	定義	舉例
單基因遺傳	由1對等位基因決定某一性狀	捲舌、酒窩、雙眼皮、美人尖 的有無及血型。
多基因遺傳	由 2 對或 2 對以上的等位基因 決定某一性狀。	身高、體重、膚色。

七、突變

- 1、任何基因都可能發生突變,但發生的機率低。
- 2、突變對個體本身或其後代大多有害。
- 3、突變是演化的原動力。
- 4、產生突變的原因:
 - a、自然突變:發生率極低。
 - b、人為誘變:物理因素⇒X光、紫外線、輻射線。

化學因素⇨食品添加物(亞硝酸鹽、二氧化硫)、漂白劑。

八、生物科技

- 1、基因轉殖:將需要的基因轉殖到細胞中,以利於人類所需,如:胰島素的製造。
- 2、複製技術:不需配子結合的無性生殖。例如:複製羊是取 A 羊乳腺細胞的細胞核取代 B 羊卵細胞的細胞核,將形成的胚胎植入 C 羊子宮內發育,則 C 羊產出小羊的基因與 A 羊完全相同。

主題八 演化與分類

一、用進廢退說與天擇說

項目	用進廢退說	天擇說
提出者	<u>拉馬克</u>	達爾文
說明	生物適應環境過程中,經 常使用的器官會發達,不 用的器官會退化,這些改 變可以遺傳給後代。	個體差異→過度繁殖→生存競爭→ 適者生存

- 二、目前發現的化石中,最早的是三十多億年前的藍綠菌,他們具有簡單的構造。但是 絕大部分的化石,都出現在六億年之後,主要原因是原始生物的骨骼或堅硬的部位 太少。
- 三、化石:保存在地層中的古代生物遺骸、痕跡或排泄物。

生物本體	生物骨骼、外殼、枝葉、猛瑪象(完整的化石)
痕跡	足跡、排遺物

四、活化石:有些生物現存種與遠古祖先差異不大,可能是生活的環境改變不大,或是個體對環境適應力強。例如:鱟、腔棘魚、銀杏。

五、生物演化現象大多發生在最近這五億四千萬年之後,於是科學家將最近這五億四千萬年的歷史分為古生代、中生代和新生代三個地質年代。

地質年代	時間(年前)	生命演化史中的重要事件
新生代	至今 ^仓 6千5百萬	*植物代表:被子植物 *動物代表:哺乳類和鳥類
中生代	6千5百萬 仓 2.5億	*末期恐龍滅絕 *被子植物出現 *哺乳類、鳥類出現 *恐龍大量繁衍最為優勢 *陸地植物代表:裸子植物 *海洋中代表生物:菊石
古生代	2.5 億 仓 5.4 億	*陸地蕨類林立,裸子植物出現 *兩生類演化出爬蟲類 *陸地出現類似蜘蛛的動物、昆蟲與兩生類 *陸地出現植物(5 億年前) *海洋中魚類、藻類、無脊椎動物(代表:三葉蟲) 發生極大的演化多樣性。
前寒武紀	5.4 億 企 38 億	*單細胞真核生物出現,有些演化成多細胞生物 *出現可行光合作用的藍綠菌 *最先出現類似細菌的原核生物

六、脊椎動物演化的演化史

七、生物命名

- 1、林奈用二名法制定了生物的名稱,我們把這種生物的名稱稱為學名。
- 2、學名的第一個字為生物的屬名,屬名的第一個字母要大寫,其他字母要小寫。學名:2個拉丁文字組成。屬名 + 種小名,書寫時需斜體或加私名號。(名詞,大寫)(形容詞,小寫)

例如:臺灣獼猴 <u>Macaca cyclopis</u> 或 <u>Macaca cyclopis</u>; Macaca 是屬名,cyclopis 是種小名。

- 3、種是分類階層最低的單位。分類階層愈低,包含的種類愈少,但彼此的構造特徵 愈相似。
- 4、同種的定義:
 - (1)生物在自然狀況下,可以互相交配並產生具有生殖能力的後代者,稱為同種。 例如:博美狗和鬥牛犬為同種生物,所以博美狗和鬥牛犬可生下具有生殖能力 的後代。
 - (2)動物園內飼養的老虎和獅,雖然能夠交配生下獅虎或虎獅,但牠們沒有生殖能力,所以老虎和獅子屬於不同種。
- 5、生物的分類階層:界、門、綱、目、科、屬、種。

主題九 生物五界與生態

- 一、生物五界:原核生物界、原生生物界、菌物界、植物界及動物界。
- 二、原核生物界、原生生物界、菌物界

分類		形態	舉例或說明	有無細胞壁
原核生物界	細菌	單細胞	無核膜或其他膜狀構造 如:液胞、葉綠體、粒	有細胞壁
原似土物介	藍綠菌(有葉綠素)	平和山心	線體	
	44.水工	單細胞	矽藻、單胞藻、新月藻	
	藻類 (有葉綠體)	多細胞	綠藻(如石蓴)、紅藻(如 石花菜)、褐藻(如昆布)	有細胞壁
原生生物界	原生動物類	大多為 單細胞	草履蟲、變形蟲	無細胞壁
	原生菌類	單細胞	黏菌	有細胞壁
	加上四次	多細胞	水黴菌	一一一一一
	眼蟲(裸藻) (有葉綠體) 單細胞		兼具動、植物特徵,有 葉綠體,具鞭毛,可自 營也可異營	無細胞壁
	酵母菌	單細胞	無菌絲	
菌物(真菌)界	黴菌	多細胞	可提煉抗生素	有細胞壁
	蕈	多細胞	菇類、靈芝、木耳、竹 蓀、冬蟲夏草	1.4 小田小豆 王.

三、植物界

項目	有無維管束	繁殖方式	細類	舉例	
	無維管束	孢子繁殖	蘚苔類	地錢(蘚,平鋪)、土馬騌(苔,直立)	
植物界	有維管束	孢子繁殖	蕨類	筆筒樹、腎蕨	
		種子繁殖	裸子植物	松、柏、銀杏、檜、蘇鐵	
			被子植物 (開花植物)	單子葉 稻、竹、玉米、蘭花、 椰子	
				雙子葉	

- ※蕨類葉片多呈羽狀複葉,在成熟葉片的下表面有孢子囊堆,孢子囊内具有孢子。
- ※裸子植物的種子裸露,而被子植物的種子則包藏於果實中。
- ※裸子植物的生殖器官為毬果, 毬果是由許多鱗片組成。雌毬果的鱗片內有裸露的胚珠, 受精後的胚珠即發育為裸露的種子, 因此裸子植物是沒有果實的。

四、動物界

分類	構造	舉例
刺絲胞動物門	(1)輻射對稱 (2)囊狀消化腔 (3)觸手捕食,觸手上有刺絲胞	水母、海葵、水螅、石珊瑚
軟體 動物門	(1)身體柔軟,不分節 (2)多有殼、運動緩慢	蝸牛、鮑魚、蛞蝓、文蛤、牡蠣、烏賊(殼藏在背面的皮膚下,所以可以快速移動)、章魚(殼已完全退化)。
棘皮動物門	體表有棘,有管足	海星、陽隧足、海膽、海參
扁形動物門	(1)背腹扁平 (2)有口無肛門	渦蟲、絛蟲、吸蟲
環節動物門	(1)身體柔軟細長且分節 (2)有剛毛幫助爬行	水蛭、蚯蚓
節肢動物門 (1)身體分節	昆蟲綱 :體分頭、胸、腹三個部分(3 對步足2對翅)	螳螂、蝴蝶、蜜蜂、蚊、蠅(蚊和蠅 1 對翅)、跳蚤(無翅)
(2)有附肢	蛛形綱 (4 對步足)	蜘蛛、蠍
(3)有外骨骼需蜕 皮	甲殼綱 (5 對步足,第 1 對特化為 螯足)	蝦、蟹
	魚類 : 腮呼吸,體表有鱗片,具有鰭	軟骨魚:鯊魚、魟 硬骨魚:彈塗魚、吳郭魚、海 馬
	兩生類 : 生殖時,必須返回有水的地方產 卵或精子	蛙、蟾蜍、蠑螈、山椒魚
脊索動物門 (1)具有脊椎構成	爬蟲類 : 具有鱗片或骨板,可以防止體內 水分的散失	蛇、壁虎、蜥蜴、鱷魚、龜
的脊柱 (2)神經系統發達	鳥類: (1)前肢變形為翼,用以飛翔;身體表面有羽毛可協助飛翔。 (2)肺延伸出氣囊,分布於頸部、胸部和腹部,甚至於骨中。 (3)鳥類的眼睛具有瞬膜保護眼睛	雞、企鵝、鴿子、麻雀
	哺乳類 : (1)能分泌乳汁哺餵幼兒 (2)大腦較其他動物發達	卵生:鴨嘴獸、針鼹 胎生有袋類:無尾熊 一般胎生:羊、狗、熊

※昆蟲由卵孵化成幼蟲,再由幼蟲變為成蟲的過程,稱為變態。如果有經過蛹才能 變為成蟲者,屬於完全變態,不完全變態的昆蟲沒經過蛹期。

Van ₹基測重點掃描生物 21

五、族群與群集

項目	定義	舉例
族群	同一時間,生活於同一環境的同種生物	<u>柴山</u> 的臺灣獼猴
群集	同一時間,生活在同一環境中的各種族群所 組成	<u>柴山</u> 的所有動、植物

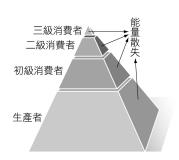
- 1、決定族群大小的因素:出生、死亡、遷入和遷出。
- 2、估計族群個體數的方法一(捉放法):以估計燒杯中綠豆數為例,設杯中有 X 顆。

 $\frac{$ 燒杯中做記號的綠豆數}{X} = \frac{取樣中有記號的綠豆數}{取樣的綠豆數}

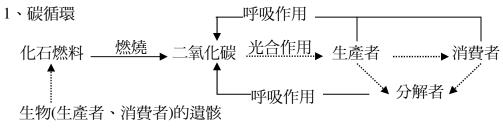
3、估算族群個體數的方法二(樣區法):將樣區分成等分的數個小樣區

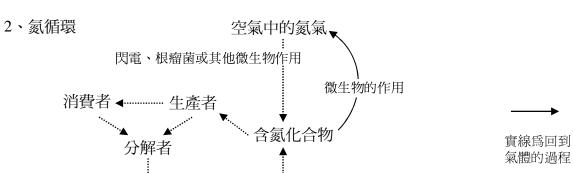
小樣區的總數量 樣區內的個體總數 = <u>取樣的小樣區數量</u> 取樣區內的個體總數

六、環境中的生物因子


項目	功能性	養分來源	舉例
自營生物	生產者	自行製造養分,行光合作用	藻類、植物
	消費者	初級消費者:攝食生產者	吃水稻的蟋蟀
		次級消費者:攝食初級消費者	吃蟋蟀的澤蛙
異營生物		三級消費者:攝食次級消費者	吃澤蛙的水蛇
共召土10		清除者:以動植物死後的屍體碎片為食的腐生動物	禿鷹、馬陸
	分解者	以分解生物的遺骸或排泄物為養分來源	細菌、真菌、原生菌

七、物種間的交互作用


交互作用	定義	舉例
捕食	捕食者得利;被捕者受害	蛇捕食青蛙
競爭	資源需求相近的物種,競爭食物、	樹林間植物競爭陽光
紀守	空間及配偶等	羚羊的求偶競爭
片利共生	一方得利;另一方無利也無害	蘭花附生在大樹上
互利共生		榕樹與榕果小蜂
	雙方得利	螞蟻與蚜蟲
		地衣是藻類和真菌的互利共生體
寄生	 寄生者得利、被寄生者受害	小繭蜂寄生在蝶幼蟲上
可生	可生有特別、似可生有文音 	香港腳: 黴菌寄生人類


八、食物網與食物鏈

- 1、食物網是由兩條以上的食物鏈所組成。
- 2、食物網愈複雜表示生物的種類愈多,內部自我調節能力愈強,穩定性愈大。
- 3、食物鏈中,能量以食物的形式在不同的階層中轉移, 但多數的能量會轉換成熱能散失於環境中,只有少數 能量可以傳遞到另一階層的生物體內。因此,為維持 自然環境各階層生物的穩定,食物鏈中各階層生物所 含的總能量會一層層的減少。

九、環境中物質的循環

十、陸域生態系

生態系	環境條件	舉例	J
	熱帶雨林(闊 葉林): 雨量豐沛,生 物種類多	植物 高大、枝葉茂盛且層次複雜	喬木、耐陰植物(蕨類、 蘚苔類或蕈類)、附生植 物(如:蘭花)
-de Li		動物 (1)色彩鮮豔 (2)滑翔或長臂穿越樹林 (3)聲音溝通	昆蟲,爬蟲類、鳥類、 哺乳類
森林 生態系	落葉林:	植物 夏季闊葉、冬季落葉	落葉闊葉樹
	四季分明	動物 以嫩葉、果實為食	昆蟲,爬蟲類、鳥類、 哺乳類
	針葉林: 接受太陽輻射 少;溫度低	植物 高大、針葉、終年常綠	常綠針葉樹
		動物 冬眠過冬	昆蟲,爬蟲類、鳥類、 哺乳類
草原	夏季炎熱、冬	植物 多以根或種子休眠度過乾旱	草本植物、灌木
生態系	季寒冷	動物 以遷徙或休眠避旱避寒	大型草食性動物、肉食 性動物、穴兔、昆蟲
沙漠 生態系	乾旱、日夜溫 差大	植物 (1)莖肥大可儲水 (2)針狀葉	耐旱植物(如:仙人掌)
		動物 昆蟲、爬蟲類有外骨骼、鱗 片或骨板減少水分散失	爬蟲類、昆蟲、駱駝、 跳鼠

十一、水域生態系

項目	ı	范圍	生產者	消費者
海洋	淺海區 水深 200m 內	潮間帶 淺海區(大陸 棚)	浮游藻類與固著性大型藻類(昆布、紫菜)	刺絲胞動物、軟體動物、節肢動物、棘皮動物、魚類
生態系	大洋區	透光區	浮游藻類	浮游動物、魚類
	水深 200m 以上	深海區	無綠色植物	魚、蝦、蟹(以生物屍 體碎片為主食)
3/K →L	湖泊	靜止水域較深 、面積較大	浮游藻類為主,靠近 岸邊才有大型水生植 物	<i>各</i> 。岬。岬。目虫。
淡水 生態系	池塘	靜止水域較淺 、面積較小	浮游藻類、大型水生 植物(睡蓮、香蒲)	魚、蝦、螺、昆蟲、 兩生類等
	河川 溪流	流動水域	岸邊枯枝落葉	
河口生態系	海洋和河流水域的交接地帶 ,水溫、鹽度變化大		浮游藻類、大型水生 植物(種類少)、紅樹 林植物(水筆仔、海 茄苳)	魚、蝦、蟹(以生物屍 體碎片為主食)、兩生 類、水鳥

十二、環境汙染問題

- 1、空氣污染,例如:廢氣導致呼吸系統疾病、臭氧層被破壞、二氧化硫導致酸雨 、溫室效應。
- 2、水污染,例如:
 - a、廢水中含重金屬導致生物產生疾病或死亡。
 - b、廢水中含磷化合物導致河川優養化。
 - c、遭受石油污染的海域,使藻類無法行光合作用、海洋生物窒息死亡。
- 3、垃圾污染,例如:燃燒塑膠和廢電纜會產生戴奧辛等有毒物質。
- 4、生物累積:環境中的污染物質經由飲用水或食物鏈進入生物體內,生物體有時無法將毒素排出,反而經由食物鏈累積到更高級的消費者體內。

十三、生物多樣性的層次

層次	說明	
遺傳多樣性	有性生殖能造成個體間的差異及多樣性,使物種對環境變動時的 適應力提高。	
物種多樣性	同一環境中有各種生物生存。生物種類愈多,食物網愈複雜,生 態系愈穩定。	
生態系多樣性	各種不同的生態系,如水域、陸域,能提供各種生物棲息,生物 種類愈多,生態系愈穩定。	

十四、外來種:經由人為途徑引進的非本地物種。外來種生物適應環境並建立族群後,經常嚴重破壞生態平衡,威脅著本土物種與群集,例如:福壽螺、紅火蟻。

